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Abstract

This paper tests the pricing accuracy and the hedging performance of the stochastic
volatility with random jumps model in markets extended to contain swap contracts whose
payoffs depend on the realized higher moments of the state variable. Using a two-step
iterative approach, latent model variables are first filtered and then used to estimate the
model parameters. The tests on European options and variance swaps written on the S&P
500 index show superior pricing accuracies in-sample and out-of-sample and jump risk is
priced. Hedging strategies involving higher-order moment swaps perform better across all
moneyness and maturity classes.
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1. Introduction

Moment swaps are derivatives whose payoff depends on the realized higher moments of the underlying
state variable. This payoff depends on the powers of the daily log-returns and allows moment swaps to
provide protection against various types of supply and demand shocks in capital markets. Variance
swaps are created in the case of squared log-returns. Variance swaps are today liquidly traded, driven
by different types of state variables and offer protection against the volatility regime fluctuations. In
addition to the variance, skewness, kurtosis and higher-order moments play important roles in the
distribution of asset prices. Higher-order moment derivatives can be useful to protect against
inaccurately estimated higher moments such as skewness and kurtosis. Doffou (2019), Rompolis and
Tzavalis (2017), and Schoutens (2005) show that the classical hedge of the variance swap in terms of a
position in a log-contract and a dynamic trading strategy can be significantly enhanced by using third-
order moment swaps.

Recent studies suggest that power-jump assets are the natural choice to complete the market.
For instance, an incomplete Levy market where power-assets of any order can be traded will yield a
complete market. Power assets and realized higher moments are highly linked and they are virtually the
same in a discrete time framework (Corcuera et al. 2005).

There has been a proliferation of studies extending the Black-Scholes (1973) option pricing
model. But only a few of these studies addressed hedging contingent claims under more general
assumptions about the state variable stochastic process. Well known examples of such studies are the
stochastic volatility (SV) model of Heston (1993), the SV and random jumps model (SVJ) of Bates
(1996), and the SV, stochastic interest rates and random jumps model of Doffou and Hilliard (2001).
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Other studies have focused on the pricing formula for moment swaps. For example, Zhu and Lian
(2011) proposed a closed-form solution to the variance swap under the Heston model. Zheng and
Kwok (2014) derived the moment-generating function (MGF) for the Heston model with simultaneous
jumps in the asset price and variance processes. Pun et al. (2015) obtained the MGF for models with
mean reversion in asset price, multi-factor stochastic volatility and simultaneous jumps in prices and
volatility factors. Using delta hedging strategies in an incomplete market cannot lead to a perfect hedge
against jump risk and volatility risk linked to a position in contingent claims.

Locally risk-minimizing delta hedging strategies which attempt to hedge the option contract
using only the state variable and minimizing the variance of the cost process of a non-self-financed
hedging position are not adequate. In the presence of jumps, these strategies perform very poorly like
the classic delta hedging strategies (Tankov et al. 2007). Other hedging strategies use option contracts
to reduce or eliminate volatility risk (Bakshi et al. 1997) or protect against jump risk (Coleman et al.
2006; Cheang et al. 2015). Cross hedging strategies or delta-vega hedging can totally remove an option
contract exposure to volatility risk but not its exposure to jump risk. Jump risk can be hedged either by
using a risk-minimization strategy (Coleman et al. 2006; Tankov et al. 2007) or by discretizing jump
sizes to compute the hedge ratios of the other options (Utzet et al. 2002). But these two methodologies
are limited. First, they do not characterize the maturity and moneyness of the option contracts to be
used to efficiently and effectively set up the hedge. Further, these two approaches do not pick up the
options’ exposure to volatility risk. Finally, Empirical evidences show that these two methods do not
outperform the delta hedging strategy (Cheang et al. 2015).

The model considered here assumes jumps to occur in the price process. However, the literature
has already provided solution to correlated jumps between the asset return and its volatility. Such a
well-received consideration is being tested in a separate paper. This paper fests empirically the
stochastic volatility with jumps (SVJ) model of Bates (1996) within the framework of Rompolis and
Tzavalis (2017) which offers a different approach to hedge derivatives under more general assumptions
of the state variable process. Under this approach, perfect hedging strategies of contingent claims under
stochastic volatility and random jumps can be achieved by extending the market to contain swap
contracts whose payoffs depend on the realized higher moments of the state variable price process.
Hence, volatility and jump risks are hedged simultaneously without the need to rely on the well-known
risk minimization criterion. Most specifically, a derivative price exposure to stochastic volatility and
random jumps can be effectively hedged by including in the self-financing portfolio variance swap
contracts and higher-order moment swap contracts respectively. Jumps size is random and therefore
enough higher-order moment swaps are needed to achieve a perfect hedge. In the limit, as the number
of higher-order moment swaps increases to infinity, the value of the self-financing hedging portfolio
converges to the value of the derivative, making the market quasi complete in the spirit of Bjork et al.
(1997) and Jarrow and Madan (1999).

Constructing perfect hedging strategies under an incomplete market model has been addressed
by a few studies using new assets. The market can be completed if power jump assets are added
(Corcuera et al. 2005). But, the prices of power jump assets are not observable in the market and
therefore cannot be traded (Olhede et al. 2010). Even though the prices of higher-order moment swaps
are not directly available and observable in the market, higher-order moment swaps are directly
affected by the state variable price changes and so can be observed and traded in capital markets.
Consequently, it makes sense to evaluate hedging strategies driven by higher-order moment swaps.
The model fo be tested in this paper extends the above listed studies in many ways. First, it accounts
for stochastic volatility and random jumps. Hence, both volatility risk and jump risk are hedged. To
hedge both risks requires the use of a new swap contract called the bipower variation swap which helps
distinguish a variance swap exposure to jump risk and volatility risk. Second, hedging is extended to
option pricing using the Black-Scholes methodology. The implementation of these hedging strategies
in a market enlarged with higher-order moment swaps leads to specific option prices. Finally, the
performance of the proposed hedging strategies is assessed using real data.
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In practice, higher-order moment swaps are not always available and illiquidity and trading
costs are important considerations. Counterparty risk must also be factored in when more financial
derivatives are purchased for hedging. This paper provides an evidence for the importance of
considering stochastic volatility, random jumps, and higher-order moment swaps in the pricing and
hedging model. The empirical results obtained here show that adding jump components to a stochastic
volatility model in a market enlarged with higher-order moment swaps leads to a more realistic
modeling of conditional higher moments as well as the moneyness and maturity effects, an
improvement of the modeling of the term structure of the conditional variance, and a superior model
pricing performance. A perfect hedge of derivative securities can be achieved when the state variable
follows the stochastic volatility with random jumps model in a market enlarged with higher-order
moment swaps. The key contribution of this paper is that hedging strategies, driven by the stochastic
volatility with random jumps model in a market enlarged with higher-order moment swaps, perform
better across all moneyness and maturity classes.

This paper is organized as follows. Section 2 defines moment swaps. Section 3 introduces the
pricing and hedging model. The model parameters are estimated in Section 4. Section 5 tests the in-
sample and the out-of-sample pricing accuracy as well as the hedging performance of the model.
Finally, Section 6 concludes the paper.

2. Moment Swaps
Suppose a liquidly traded asset (stock or stock index) with a continuous dividend yield y > 0 has a
price process modelled by an Ito semi-martingale P = {P;, t = 0} such that P > 0 and P_ > 0. In
addition to this asset, a bond or money market account with a constant compound interest rate « is
available with a price process 0 = {0, = e?',t > 0}. Consider n equally spaced time intervals of
length At such that t; = jAt, with j =0,1,2,...,n and ¥ = nAt is the expiration date of the
derivative contract written on the state variable price P;. The price of the state variable at each interval
j is denoted P; for simplicity. In practice, the t; are the daily closing times and P; is the closing price at
day j. It follows that the daily log-returns are given by 1n(Pj) — ln(Pj_l), j=12,...,n

Assume futures contracts written on the state variable price P exist with expiration date . By
risk-neutral valuation, the futures contract price process follows F; = Piexp(a —y)(W¥ —t). For
simplification, the futures price at the discrete time t; is denoted F;. The mth-moment swap on the
stock is a contract in which the two counterparties agree to exchange at maturity a nominal amount
multiplied by the difference between a fixed level contract price and the realized level of the mth-order

non-central sample moment of the log-return over the life of the contract. The payoff function is
defined by

P\
MSP = NAS™,In (p,-il) , 1)
where NA is the nominal or notional amount and n is the number of segments of length At within the
time interval [0, W], t € [0.V].

For = 2, equation 1 gives the expression of the 2nd-moment swap or variance swap. Variance
swaps are basically forward contracts in which the counterparties agree to exchange a notional amount
multiplied by the difference between a fixed variance and the realized variance. The fixed variance is
the variance swap rate or the variance forward price. Variance swaps offer protection against volatility
shocks. The 3rd- moment swap is linked to the realized skewness and offers protection against
changes in the symmetry of the underlying distribution. Changes in the tail behavior of the underlying
distribution created by the occurrences of unexpected large jumps are shielded by the 4th-moment
swap related to the realized kurtosis. If the futures price is the state variable driving the moment
derivatives, then the payoff function of the mth-moment swap on the futures is
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F: m
MSP = NAZY In (1) )
Fj—l
Using the link between the stock and futures prices, F; = Piexp(a — y)(¥ — ¢;), and setting
the notional amount NA to one, the relationship between the futures and the stock moment swaps is
derived as follows

MSg* = Yi-q [—(a — y)At + ln( P )]m — TS, (r}rll) (= (e — y)AD)" m( p; )m—h _

Pj—l Pj—l

s () (@ = A" MS{"™ — (@ = y)W(~(a ~y)A)™ ™ + m(~(@ ~ A" 10,

where Qp = Z}l:lln( P ) =In (Z—“’) = In(Py) — In(Py).
0

Pj—l
The term ()p is the log-contract on the stock and plays a critical role in the hedging of moment
swaps. If At to the higher order powers is very small and therefore negligible, the above listed
expression can be approximated to

MSP ~ MSP — m(a — y)AtMST™ ™Y 3)

Let (H,L,P) be a filtered probability space where L = {L;,t > 0} is the filtration which
satisfies the usual conditions and P the physical probability measure. In this economy, the dynamics of
the log-price process y = In P satisfies Assumption 1 of Ait-Sahalia and Jacod (2009). Hence, as the
time interval gets closer to zero, the terminal values of higher-order moment swaps in discrete time
converge to their continuous time values. This convergence justifies an analysis in continuous time of
these terminal values defined in discrete time.

The quadratic variation of the log-price process y in the time interval [0, W] is defined as
(X, X)ow € N*(P) where N*(P) is the N'* norm on the physical probability measure P. The power
variation of y at the mth order in the interval [0, W] is defined by Y oci<p(Ax:)™ € N*(P), for
m > 2. This establishes the existence of continuous time swap contract rates and their related expected
returns. In the absence of arbitrage, there is a risk-neutral probability measure (equivalent martingale
measure) B, continuous with respect to the physical probability measure P, under which (y, x)oy and

Yo<t<w(Axe)™ can be priced, thatis (x, x)ow € N *(P) and Y o<r<cp(Ax)™ € N*(P) for m = 2.
In continuous time, the variance swap payoff given by equation (1) when m = 2 converges in

probability to the annualized quadratic variation of the log-price process which is &( X, X)oyw (Protter,
1990). Therefore, under the equivalent martingale measure 9B, the variance swap rate in continuous
time, MSR?, is the risk-neutral expected value of %( X, X)ow given by

MSR? = EF (540 0ow) @

The payoff, in continuous time when n grows to infinity, of the mth-order moment swap given
in equation (1) for m = 3 converges in probability to $20<t§p(A}(t)m. Consequently, under the

equivalent martingale measure B, the continuous time mth-order moment swap rate at time t, MSR}",
is given by

MSR{™ = E;B (%Zoqsw(AXt)m) )

The variation of the discontinuous part of the log-price process y which is $20<tsqj(A)(t)2
cannot be captured in the higher-order moment swap defined in equation (5). The annualized quadratic
variation of the log-price process é( X, X)o,w Which contains the variation of this discontinuous part can
be in fact decomposed into a continuous part and a discontinuous part as follows
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1 1 1
30 V0w =506 00w + 5 Zo<esw(Bxe)?, (6)

with (y, x)¢ being the continuous part of (y, x).

The decomposition given in equation (6) above has been proved in Barndorff-Nielsen and
Shephard (2004), Ait-Sahalia and Jacod (2009), and Rompolis and Tzavalis (2017). Given the above
decomposition, a new swap contract called bipower variation swap was introduced in Rompolis and
Tzavalis (2017) to price the discontinuous part of (y, x). In discrete time, the terminal value at time ¥
of the bipower variation swap takes the following expression assuming a notional amount of one:

P; \? _
Msﬁ.w=(2?=1ln(p,.;) g Cen) DY ) @

The volatility risk premium and the jump risk premium which both affect the variance swap rate can
now be analyzed separately using the bipower variation swap.
The bipower variation swap rate at time ¢t in continuous time is given by

1
MSth,bip = E;B (gZo«sw(AXt)z), 8)

P.
In—-
Pj—l

Pjt1
In—L=
Pj

with MSR? — MSR?,, = EF (5t )5 ). ©)

Based on equation (9), the terminal value of a portfolio composed of a long position in a
variance swap contract and a short position in a bipower variation swap contract is a function of only
the continuous component of the quadratic variation of x . Hence, the market price of volatility risk can
be assessed given the value of this portfolio.

3. Pricing and Hedging Model Driven by Higher-Order Moment Swaps

The higher-order moment swap contracts introduced in the previous paragraph can be used to price and
hedge derivative securities which include European options, barrier options, volatility swaps, and
volatility swap options. The state variable which here is the stock price is assumed to follow the
stochastic volatility with jumps (SVJ) model of Bates (1996). Jumps do occur due to supply and
demand shocks in the stock market. The occurrence of jumps causes the distribution of the spot price to
be more skewed and kurtotic than the lognormal but does not affect the risk-neutralized expectation.
The model can accommodate small and large jumps as well as the frequent and infrequent arrival of
information in the stock market. The stochastic evolution of the instantaneous conditional volatility, a
randomization known to induce excess kurtosis, directly affects contingent claims pricing biases. The
proposed Bates model is part of a family of models with independent fat-tailed shocks to the stock
price. Accordingly, the dynamics of the stock price P, and that of its variance U, follow the stochastic
processes

2t = WF — wd)dt +/0,dZy, + k.dq, (10)
t
dU, = B(6 — U)dt + $[U,dZ,. (11)

where 9f = a —y + APU, + a)(1§ — 51;) ; AP is the market price of risk; k; is the random percentage
jump conditional upon a Poisson-distributed event occurring, where 1 + k; is log-normally distributed:
In(1+ k) ~N(In(1 + k) — 0.5¢2,¢%) = N(9k, ¢2) , with E(k,) = k ; w is the frequency of Poisson
events; € is the jump dispersion parameter; g, is a Poisson counter with intensity w : Prob(dq, = 1) =
wdt and Prob(dgq, =0) =1— wdt ; 9 = exp (19k + %d),%) — 1 and 9% is the risk-adjusted mean

value of 9. The stock price process is like the geometric Brownian motion process most of the time,
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but on average w times per period the price jumps discretely by a random percentage. Jump random
variables are uncorrelated, i.e., (dq,k) = 0, Cov(dZ,,dq) = Cov(dZ, k) = 0.

Because the increments to a standard Brownian motion dZ; and dZ, are assumed to be
correlated with correlation coefficient ¢, i.e., Cov(dZ,,dZ,) = &, there is a third Brownian motion

process Z independent of Z; such that dZp; = &dZy; ++/1—§?dZ3, . The stochastic
discount factor process D for the proposed model can be expressed as follows

dD 3 AT
Dt = —(a + wip)dt — AP\[TrdZy , - qu% dZs, + ko, dq,. (12)

where AU picks up the market price of volatility risk, 97, is the mean jump size given by
5 = exp (ﬂkp + %d),%p) —1and In(1+ kp,) ~N(9kp, 7, ). The mean jump size Iy, is constrained
to zero in the spirit of Pan (2002) and Broadie et al. (2007) which leads to a constant value for the
jump frequency parameter w under the risk-neutral probability measure . The closed-form solutions
of the rates of these swaps and the expected value changes of positions in them at time zero are
provided in Rompolis and Tzavalis (2017).

In the absence of arbitrage, the variance swap rate at time t € [0, W] under the stochastic
volatility and jump model is expressed as follows

MSR? = %( [fU,dv + [ k2 dg, + AT, + B(t)), (13)

where A(t,U,) =1({0: + (1 = {)6%) ;¢ = (1 - e‘"ﬁ‘B) /(nB*) ; 5% and B are respectively the

risk-neutralized values of § and B ;n =W —t ; and B(t) = wn (1933 ) , with 19;B being the non-central
second-order moment of k under the risk-neutral probability measure 8. The expected change in value
of a long position in the variance swap at time zero under the physical probability measure P is given

by E7[dUMSR*], with UMSR® = e~*"(MSR? — MSRZ) and further expressed as follows

2 2 2 QUMSR? _ we—an B
ﬁé\/ISR dt = EtP[dU{L\’ISR ] = (auéWSR + 9100 AU + v (192 - 192 ) > dt, (14)

where AU = ¢p&AP + AU , 9, is the second-order non-central moment of k under the physical

probability measure P, and 1921; the risk-neutral measure of 9J,.

Equation (14) clearly shows that the expected change in value of a long position in a variance
swap at time zero depends on a jump-component risk premium, the price of volatility risk AU, and the
market price of risk AP. The jump components are jumps related to the underlying stock price P. The

2., . . .
expected excess value change 9MSF° — qUMSE® is negative because 9, — 9 is negative and Carr and

Wu (2010) showed that AU is negative. The negative sign of 9, — 19;B is due to 19,? <Y, <0 and

Pi < (gb;f )2, with 1923 and gl);‘{B being respectively the risk-neutral measures of ¥, and ¢, (Broadie et
al. 2007). This is consistent with the fact that the variance swap pays when the stock price P suddenly
decreases or increases because of jumps that occur due to supply and demand shocks in the stock
markets. To protect against these unexpected supply and demand fluctuations, risk averse investors are
willing to pay a premium to take long positions in the variance swap.

Similarly, in the absence of arbitrage and under the stochastic volatility model, the bipower
variation swap rate (when m = 2) and the higher-order moment swap rate (when m > 3) are given by

1t
MSRY = =[5 ki dg, + wndy). (15)
while the expected change in value at time t of a long position in these contracts at time zero is

OMSR" dt = EP[dUYSR™] = (aUItV’SR’” + %” (O — ﬁ,‘ﬁ)) dt, (16)
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where 9, is the mth-order non-central moment of k under the physical probability measure P and 19:5
is the risk-neutralized value of 9,,.

Equation (16) indicates that the expected excess value change of a long position in a bipower
variation swap, given by 19?45’?2 — an’SRZ, i1s negative because 9, — 19;B is negative. In addition to
being negative, the expected value change is smaller in magnitude than that of the variance swap
because the bipower variation swap pays only when the stock price exhibits some jumps during the
time segment [0, W] while the variance swap also picks up any increase in the spot variance U. Further,

equation (16) shows that the expected excess value change of a long position in higher-order moment

swaps, 9MSE™ — qUMSR™ with m > 3, has the sign of the difference 9,,, — 5. Given the normality

assumption of the log-jump size k, 9,, and 19;’3 exist for all values of m. In general, for higher-order
moment swaps, the expected excess value change is strictly negative for even values of m and strictly
positive for odd values of m, that is

IMSR™ _ qUMSR™ < 0, if m is even;9MSR™ — qUMSR™ > 0, if m is odd. (17)

At time t, the derivative security S to be priced and hedged under the stochastic volatility and
jump model has a price S; which depends on time ¢, the underlying stock price P, and the spot
variance Uy, that is &, = &(t, P;, U,) with 0 < t < W. The function G(.) is assumed to be continuous
with partial derivatives of any order. The self-financing portfolio which replicates the price of the
derivative security &; is assumed to be composed of the underlying stock, the money market account,
the variance swaps, the bipower variation swaps, and the higher-order moment swaps. As a result, the
implied vector of hedge ratios at time t is characterized by the quantity of the state variable P, the
position in the bond or money market account 0, the number of long positions in variance, bipower
variation and higher-order moment (up to order m) swaps. Hence, the implied vector of hedge ratio at

time t, given the various positions taken at time zero, is expressed Dby
MSR? MsrR™\' ) ) ) .
H, = (HP,HG’HéWSRZ'Ht E e e JH ) . To be able to replicate the contingent claim &, it is

necessary to have an adequate finite but sufficiently large number M of higher-order moment swaps
such that for all t € [0, ¥]

S, = HPP, + HOO, + HMSR'GMSE® 4 Jim S _ MR (5 MSRE (18)
with the hedge ratios given by Hf = Z—f ,

0 _ p-1 P MSR?75MSR? . M MSR[* ., .MSR[*
HY = 0; (&, — HEP, — HYSFUMSR® — limy, o, S0, Hy'*0 055,
2 96
HMSR — o0n
t dMSR?’
MSR{ _ o (ly( 926 i) ) IS

t 2\ampP2 dInp) 9MSR?

MSRM y ms S
H fzeaﬂ(—)( _ ) for m=3.
t m!/ \dlnpm™ 9lnP/’ -

H ) and

The expected return at time t of the derivative security & is given in Rompolis and Tzavalis
(2017) as

s, IInG dInG . .
EgJ G_t] = adt + m(ﬁf +y—- a)dt + —aUMSRZ (ﬁé\dSR — OIUQ/ISR )dt
Y (926/6 9InG\ AING\, wmsgz . msk?
ol = - - 9, t—aU, "t )dt
e (2 (61nP2 alnP) aM5R2>( P - vy

i D e () (258 - 29) (0 ) w
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Equation (19) shows that the derivative security S can be replicated in a market extended to
contain variance swaps, bipower variation swaps and a number M of higher-order moment swaps. The
delta hedged gains of the self-financing portfolio will converge to zero if M is large enough to make
the market quasi complete, leading to the existence of a unique risk-neutral measure 8 under which the
derivative &, can be priced (Jarrow and Madan 1999; Bjork et al. 1997). The price of the contingent
claim &; can be derived by either adopting the Bates (1996) equilibrium approach or by following the
Rompolis and Tzavalis (2017) methodology in eliminating all the stochastic terms in &;. In the
absence of jumps (w = 0), equation (19) shows that taking a position in the underlying stock, the
money market account and the variance swap contract, the derivative S can be perfectly replicated.

The contingent claim exposure to volatility risk is hedged by the positions H{"SRZ held in

. . . . " MSR? .
variance swaps. But variance swaps are also exposed to jump risk and the position H, "¢ held in the
bipower variation swap adjusts the change in value of the derivative &, due to changes in the stock
price as a result of the exposure to the same jump risk. The exposure of the contingent claim &, to
m

jump risk is hedged by higher-order moment swaps. For all values of m, the hedge ratios HiWSRt are

the same for call and put options of the same exercise price and maturity date for the put-call parity
technical arbitrage condition to hold.

4. Data

Spot data on the S&P 500 index as well as real data on variance swap rates and European call and put
option prices written of the S&P 500 index are used in this study. The option data set is from the
OptionMetrics Ivy data base and spans from January 2003 to December 2017 for a total coverage of
fifteen years. This data set is used to test the pricing accuracy of the model and to evaluate the relative
performance of various hedging strategies.

Daily closing option quotes from the Chicago Board Options Exchange are used each
Wednesday and mi-quotes are computed as averages of the bid and ask quotes. The underlying index
level is adjusted for dividends and then matched with each option quote. The adjustment for dividends
is carried out by subtracting from the index level the present value of the future realized stream of
dividends between the quote date and the maturity date of the option. For a given option maturity, the
risk-free rate is computed via interpolation of available T-bill rates. To effectively carry out the
empirical tests, only at-the-money (ATM) and out-of-the money (OTM) calls and puts are used
because they are more actively traded than in-the-money (ITM) options. Options with less than one
week to maturity are excluded from the sample. Option prices less than 3/8 are too close to tick size to
reflect true option values and are therefore deleted from the sample. Option contracts with zero open
interest, with extreme moneyness and those that violate various boundary and no-arbitrage conditions
are discarded. The series of dividend yield y is derived from the sample and estimated using the put-
call parity technical arbitrage condition applied to the at-the-money (ATM) European options. The data
for the variance swap rates written on the S&P 500 index provided by a major broker-dealer are daily
closing quotes of variance swap rates traded at the over-the-counter market with maturity intervals n of
1,2,3,6,9, 12, and 24 months from January 1, 2003 to December 31, 2017. These variance rate data
are sampled weekly on every Wednesday to avoid the impact of weekday patterns on the estimation of
the parameters. The quotes from the previous business day is used if a given Wednesday is a holiday.
This classification generates 784 weekly observations for each series. Prices that reflect the illiquidity
of the variance swaps market are deleted from the sample. The resulting descriptive statistics appear in
Table 2.

The filtered option data set is summarized in Table 1 with a total of 36,164 call option contracts
and 35,988 put option contracts. Panels A - C in Table 1 are arranged over six moneyness (P/E)
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Table 1: S&P 500 Index Call and Put Option Data 1/2003-12/2017

TTM <30 [30<TTM <90[90 <TTM < 180| TTM >180 | All
Panel A: Number of Call and Put Option Contracts
Call Put Call Put Call Put Call Put Call Put
P/E < 0.975 539 - 3,771 - 3,098 - 3,682 - 11,090 -
0975 <P/E<1 1,159 3,103 1,086 901 6,249
1< P/E <1.025 1,231 2,595 937 723 5,486
1.025 < P/E < 1.05 941 1,851 735 474 4,001
1.05 < P/E < 1.075 692 1,389 602 414 3,097
P/E > 1.075 1,250 2,236 1,539 1,216 6,241
All 5,812 14,945 7,997 7,410 36,164 | 35,988
Panel B: Average Call and Put Prices
P/E < 0.975 3.57 - 10.39 - 17.12 - 31.10 - 18.65 -
0975 <P/E<1 9.75 22.14 34.11 56.74 27.22
1< P/E <1.025 20.13 32.39 41.09 56.83 34.46
1.025 < P/E < 1.05 | 32.26 41.86 48.13 62.55 43.58
1.05 < P/E < 1.075 43.11 52.68 55.20 67.26 53.14
P/E > 1.075 56.18 62.47 64.12 72.59 63.57
All 28.86 32.39 37.35 48.09 36.18
Panel C: Average Implied Volatility from Call and Put Options
P/E < 0.975 16.26 - 16.10 - 16.31 - 16.95 - 16.45 -
0975<P/E<1 15.99 17.12 17.36 18.20 17.12
1< P/E <1.025 17.52 17.97 17.83 17.99 17.86
1.025 < P/E < 1.05 19.48 18.87 18.51 18.15 18.87
1.05 < P/E < 1.075 | 22.86 19.99 19.04 18.61 20.26
P/E > 1.075 32.47 22.54 19.81 18.93 23.16
All 21.23 18.32 17.74 . 17.73 18.56

Notes: The sample is composed of European call and put options on the S&P 500 Index. Closing quotes each Wednesday in
the whole period running from January 2003 to December 2017 are used. Moneyness and maturity filters applied
here include among others Bakshi et al. (1997). The implied volatilities are derived using Black-Scholes (1973).
Only the call option data and prices are reported here. The put prices can simply be obtained using the put-call
parity technical arbitrage condition.

Table2:  Variance Swap Rates Descriptive Statistics

Maturity Standard . Weekly
(months) Mean Deviation Skewness Excess Kurtosis Autocorrelation

1 20.457 6.527 0.724 0.733 0.948

2 20.544 6.288 0.749 0.756 0.969

3 20.641 6.024 0.683 0.639 0.977

6 21.237 5.844 0.711 0.821 0.981

9 21.615 5.729 0.642 0.478 0.983

12 21.991 5.621 0.579 0.147 0.986

24 22.592 5.480 0.530 -0.195 0.989

Notes: Table 2 shows the mean, standard deviation, skewness, excess kurtosis, and weekly autocorrelation of the variance
swap rate quotes in volatility percentage points on the S&P 500 Index at different maturities in months. Weekly
data taken every Wednesday from 1/1/2003 to 12/31/2017 generated 784 observations for each series.

categories and four categories in time to maturity (TTM) in days. The number of contracts in each category
is reported in Panel A, the average call price in each category is reported in Panel B, and the average Black-
Scholes implied volatility in each category is reported in Panel C. The average implied volatility computed
from the data set in Panel C, with maturity intervals of 1, 2, 3, 6, 9, 12, and 24 months, is needed to estimate
the parameters of the stochastic volatility with jumps model and to calculate the third-order risk neutral
moment 19;]3 . Once the call price is known, the put price can be obtained using the put-call parity relation.
Hence, only the call option data and prices are reported in Table 1 to make the table more readable. Each
column of Panel C shows the evidence of the volatility smirk across moneyness.
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5. Empirical Investigations

Two different investigations are conducted. The first assesses the pricing accuracy of the stochastic
volatility with random jumps model (SVJ) in a market enlarged with higher-order moment swaps. The
second tests the relative performance of various hedging strategies using real data on variance swap
rates and European call and put prices.

5.1. Testing the Stochastic Volatility with Random Jumps Model

5.1.1. Model Parameters Estimation

A two-step iterative approach is used to estimate the model parameters. The intuition driving this
approach is to first filter latent model variables and then use these variables to estimate the model
parameters. These two steps are repeated until there is no further improvement in the aggregate
objective function. In a way, this approach is a modification of the implicit parameter estimation put
forward in Bates (2000). This is the first time the two-step iterative approach has been improved to
simultaneously estimate the model’s structural parameters not related to jumps, the model’s structural
parameters related to jumps and the spot volatility.

The implementation of the SVJ model poses the challenge of jointly estimating the model’s
structural parameters not related to jumps, I' = {8, 8, ¢, ¢} , the model structural parameters related to
jumps or vector of unknown jump parameters, Y = [ap, k® w®, s], and the spot volatilities {U,}. The
unknown jump parameter op is the instantaneous variance of the stock price conditional on no jumps.
The model structural parameters (both jump related and non-jump related) and the spot volatilities are
estimated using option and return data in a two-step iterative approach, an improvement of the
approach adopted in Christoffersen et al. (2009) to account for jumps.

Consider a sample of option data covering I Wednesdays. In the implementation of the model,
a full calendar year of option data are used and so 7' = 52. Given a set of initial values for ' , Y, and
{U,}, a two-step iterative procedure is then initiated. In the first step, solve T sum of squared pricing
error optimization problems, given a set of model structural parameters I' and Y, as follows.

Table 3:  Parameter Estimates and Option Fit to the Stochastic Volatility with Jumps Model

Parameter Estimates IVRMSELF
3% » In- Out-of- Nﬁrgll))er
Year B o ¢ ¢ I v @ £ sample | sample orDbs
2003 1.2133 0.0367 0.6473 -0.5047 | 0.2198 0.0714 0.8429 0.1001 1.7119 N/A 5,389
2004 1.5036 0.0274 | 0.3688 -0.6056 | 0.1548 0.0571 0.6743 0.0802 0.8177 0.9424 5,608
2005 1.5802 0.0233 0.4997 -0.5935 | 0.1281 0.0005 0.5057 0.0605 0.5385 1.1256 6,309
2006 1.6652 0.0158 0.5746 | -0.6129 | 0.1281 0.0786 0.9271 0.1103 1.9832 2.0036 6,748
2007 2.7494 0.0143 0.7694 | -0.6990 | 0.1817 0.0007 0.5058 0.0604 0.6122 0.7875 8,103
2008 1.5550 | 0.0118 0.8351 -0.7781 0.3331 -0.0801 0.6745 0.0408 1.1651 1.5645 8,865
2009 1.9722 0.0184 | 0.6132 | -0.5907 | 0.3148 0.0643 0.7586 0.0906 0.5886 0.7873 2,938
2010 1.3446 0.0328 0.4709 | -0.5373 | 0.2255 0.0572 0.6746 0.0801 1.0003 1.0502 4,176
2011 1.1361 0.0637 0.5655 -0.5398 | 0.2420 | -0.0701 0.5902 0.0507 0.6729 0.7802 3,888
2012 1.3218 0.0675 0.5832 | -0.6711 0.1780 0.0644 0.7588 0.0905 0.8245 1.0047 3,551
2013 1.5973 0.0422 | 0.6821 -0.6606 | 0.1423 0.0645 0.7584 0.0907 0.5227 1.0661 3,427
2014 2.3688 0.0350 | 0.5993 -0.6135 | 0.1418 0.0572 0.6748 0.0804 0.7001 0.7339 3,069
2015 2.0940 | 0.0336 | 0.5264 | -0.6618 | 0.1667 0.0006 0.5055 0.0606 0.5788 0.6336 3,035
2016 1.0669 0.0429 0.4865 -0.5173 | 0.1583 0.0573 0.6747 0.0803 0.5863 0.6165 3,479
2017 0.9954 0.0288 0.4736 | -0.5840 | 0.1109 0.0787 0.9273 0.1104 0.8174 0.9465 3,567
Total 1.2476 1.3745 72,152

Notes: The parameters of the stochastic volatility with random jumps model are estimated year by year based on joint options and
returns data. Wednesday closing option quotes from Table 1 are used in the computations of the speed of mean reversion
B, the long-term mean value 6 of the variance of the price ( Uy), the volatility of the variance (volatility of volatility) ¢,
and the correlation & between returns and return variance. Return data on the S&P 500 index are used in the

computations of the jump-diffusion parameters which include the spot volatility cp, the mean jump size §$, the jump
frequency parameter o, and the jump dispersion parameter &. All the structural parameters reported above are estimated
using the iterative two-step approach described in section 5. The in-sample root mean squared errors are calculated using
the Black-Scholes Vega approximation to IVRMSELF.
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~ 2
(0.} = argmin $}%, (e — ST Y,0)) /vEt = 12,...,7. (20)

where the market-observed price of contract k on day t is S, and the associated model price is
Sk (T, Y, U;). The number of contracts available on day t is N, while vy, is the Vega of contract k at
time t. The Vega vy, is the sensitivity of the option calculated using the implied volatility from the
market price Sy, of the option. In the second step, solve one aggregate sum of squared pricing error
optimization problem, given a set of spot volatilities {U;} obtained in step 1, as follows:

N 2
{[" Y} = arg min legt (Gk,t — G (T,Y, Ut)) /V,%t , 2D

where N = Y7_, N,.

The above two steps are repeated until there is no further improvement in the aggregate
objective function in step 2. The scaling factor 1/v, . is the key difference between this procedure and
the Bates (2000) method of implicit parameters estimation. Because of this scaling factor, the objective
function is seen as an approximation to implied volatility errors. The model price of the option can then
be taken as a first-order approximation of the market price of the option around the implied Black-
Scholes volatility, that is:

Table 4:  Option Fit to the Christoffersen et al. (2009) Two-Factor Stochastic Volatility Model

Year In-Sample IVRMSELF Out-Sample Number of Observations
2003 1.8361 N/A 5,389
2004 1.4693 1.9859 5,608
2005 1.3527 1.7064 6,309
2006 2.2145 2.2713 6,748
2007 2.1364 2.1694 8,103
2008 1.4227 1.7136 8,865
2009 0.6317 0.8144 2,938
2010 1.0439 1.0891 4,176
2011 1.1752 1.6245 3,888
2012 0.9791 1.0418 3,551
2013 0.5536 1.1347 3,427
2014 0.7011 0.8029 3,069
2015 0.7143 0.7358 3,035
2016 0.6018 0.6425 3,479
2017 0.8472 0.9633 3,567
Total 1.4368 1.5692 72152

Notes: Table 4 shows the computed implied volatility root mean squared error loss function IVRMSELF), both in-sample
and out-of-sample, for the two-factor stochastic volatility model of Christoffersen et al. (2009) fitted to the same
S&P 500 Index call and put data from 01/2003 to 12/2017. The values of the IVRMSELF computed for the
stochastic volatility with random jumps model in Table 3 are much lower than those computed for the two-factor
stochastic volatility model of Christoffersen et al. (2009). This is the hard evidence that the stochastic volatility
with random jumps model fits better the option data than the two-factor stochastic volatility model in a market
enlarged with variance swaps.
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Table 5:  Regression Analysis for Pricing Errors for European S&P500 Call and Put Options

Regression Parameters Call Options Put Options
Intercept 0.1284 (0.0114) 0.1308 (0.0132)
P/E - 0.1027 (0.0113) - 0.1041 (0.0133)
™ 0.0426 (0.0011) 0.0475 (0.0014)
VoL 0.0211 (0.0113) 0.0212 (0.0132)
Adj. R? 0.0493 0.0512
Number of Observations 36,164 35,988.

Notes: Pricing errors are regressed over moneyness (P/E), time to maturity (TM), and the previous day’s annualized
standard deviation (VOL) of the S&P 500 index returns. The regression is run separately for call and put options

using the equation below:

PPE,(t) = by + by =2 + b,TMy, + bVOL(t — 1) + 04 (), k=1,...,N.

k
Standard errors are in parentheses and are computed using the White (1980) heteroskedasticity consistent

estimator. The previous day’s annualized standard deviations of the S&P 500 index returns are computed from 5-
minute intraday returns.

S(T,Y,0,) = G+ Viee (bie — bie (0 Y, UL, (22)

where the implied Black-Scholes volatilities from the observed market price and from the model price
are respectively ¢, . and ¢, (I, Y, V), and v is the Vega of the option which measures the Black-
Scholes sensitivity of the option price to changes in the volatility ¢y, .. This approximation will be used
in the next paragraph to assess the model fit.

5.1.2. Model Pricing Performance Assessment and Results

Using the approximation put forward in equation (22), the model fit can be assessed by the value of the
implied volatility root mean squared error loss function IVRMSELF) given by:

1/2 1/2

— (1N 2 1 onN z 2
IVRMSELF = (ﬁ Kt (¢k,t — ¢ (T, Ut)) ) ~ (ﬁ Kt (6k,t — G (LY, Ut)) /Vk,t>

This approximation to the implied volatility errors also used in Christoffersen et al. (2009),
Schwartz and Trolle (2009), Carr and Wu (2007), is very useful and less costly numerically in a large
scale empirical estimation undertaken here.

Moneyness, maturity and volatility effects on pricing bias can be further examined using a
regression analysis. The dependent variable is the percentage pricing error of a given option in the
sample at a given date. The independent variables are the moneyness, the time to maturity and the
volatility of the S&P 500 index return. The regression equation is given by

PPE,(¢t) = b, + bl%? + byTM, + b3VOL(t — 1) + 0, ()k = 1, ... ... N, (23)
where PPE;(t) is the percentage pricing error of option k on date t; P/E, and TM, represent
respectively the moneyness and time to maturity of the option contract; VOL(t — 1) stands for the
previous day’s annualized standard deviation of the S&P 500 index return; and O (t) is the error term.
Because this is a cross-sectional regression, the standard errors (in parentheses in Table 5) are
computed using the White (1980) heteroskedasticity consistent estimator. The regression is run
separately for calls and puts and the results are summarized in Table 5. Each independent variable has
statistically significant explanatory power of the remaining pricing errors for both call and put options.
Consequently, the pricing errors for each option category have some maturity, intra-daily volatility and
moneyness related biases with different magnitudes. The pricing errors have the same sign and
therefore biased in the same direction. The pricing errors relative to the S&P 500 index’s volatility on
the previous day are negligible and practically stationary, confirming the importance of modeling
stochastic volatility. The pricing errors for both call and put options reported confirm that modeling
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both stochastic volatility and jumps is important. The adjusted R? of 4.93% for call options and 5.12%
for put options show that the collective explanatory power of these independent variables is quite low.

Table 3 shows the results of the parameter estimates and the stochastic volatility with random
jumps model fit to the option data. Table 4 shows the Christoffersen et al. (2009) two-factor stochastic
volatility model fit to the same data set. The tests of the stochastic volatility

Table 6:  In-Sample IVRMSELF by Moneyness and Maturity, 1/2003—-12/2017

TTM <30 30<TTM <90 90 <TTM < 180 TTM > 180 All

P/E < 0.975 1.2691 0.7753 0.6372 0.7538 0.7689
0975 <P/E<1 1.2487 0.6835 0.5926 0.6704 0.7931
1< P/E <1.025 1.1847 0.6639 0.6582 0.6947 0.8523
1.025 < P/E < 1.05 1.7645 0.7828 0.7963 0.7658 1.0948
1.05 < P/E < 1.075 2.1837 1.1069 0.8895 0.8394 1.2253
P/E >1.075 2.9573 1.8684 1.3029 1.4257 2.1061

All 2.1541 0.9886 0.8419 0.8951 1.2476

Notes: The parameter estimates reported in Table 3 are used to compute the IVRMSELF for different degrees of
moneyness and maturity. The values of the implied volatility root mean squared error loss function (IVRMSELF)
computed are all lower than those reported in Christoffersen et al. (2009) for all degrees of moneyness and
maturity.

Table 7:  Results of the European Options Hedging Strategy HS (P,MSR? MSR1?)

Mean Absolute Error | Root Mean Squared Error
MAE RMSE

30 90 180 30 90 180 30 90 180

Mean Hedging Error HE

Hedging

Moneyness Strategy

Panel A: European Call Options Hedging Errors

P/E =1.00 |HS(pyspzyspiz)| 0.053 | -0.013 | -0.011 | 0.326 | 0237 | 0.184 | 0.519 | 0306 | 0.272
P/E =0.975 |HSp ysg2mspz)| 0.037 | -0.009 | -0.008 | 0.314 | 0213 | 0.175 | 0468 | 0317 | 0.245
P/E =095 |HSpysp2mspz)| 0.054 | -0.029 | -0.021 | 0436 | 0387 | 0369 | 0.725 | 0.541 | 0481

Panel B: European Put Options Hedging Errors

P/E =110 |HS(pysp2 msriz)| 0.019 | -0.026 | -0.004 | 0355 | 0438 | 0.527 | 0.610 | 0.729 | 0.781
P/E =108 |HS(pysp2 mspiz)| 0.031 | -0.033 | -0.003 | 0469 | 0527 | 0.578 | 0.642 | 0751 | 0.796
P/E =105 |HS(puspzmsriz)| 0.049 | -0.012 | -0.001 | 0528 | 0.559 | 0.602 | 0.793 | 0.808 | 0.811
P/E = 1025 |HS(p ysp2 mspiz)| 0.036 | -0.005 | -0.003 | 0.648 | 0.619 | 0.534 | 0.997 | 0742 | 0.729

Notes: The values of the mean hedging error H'E, the mean absolute error MAE and the root mean squared error RMSE are
displayed in this Table for the hedging strategy HS(P,MSRZMSR%Z) executed on European options written on the S&P

500 index. This strategy is driven by multiple instruments which include the bipower variation swap and mth-order
moment swaps (3 < m < 12) in the replicating portfolio. The mth-order non-central risk-neutral moment at each
point in time is used to approximate the mth-order moment swap rate. The deltas of the hedging instruments are
drawn from the estimates of the model in Table 3. Maturities considered are 30, 90 and 180 days. Hedging errors
are computed each day with daily rebalancing from 1/2003 to 12/2017.

with random jumps model are implemented using 2003-2017 data on European call and put options on
the S&P 500 index. The data set is disaggregated into fifteen separate samples containing each one full
year of option data from 2003 to 2017. Next, fifteen in-sample exercises are undertaken and then the
first fourteen groups of parameter estimates are evaluated one-year out of sample. To get the out-of-
sample results, the out-of-sample spot volatilities for the following year are calculated using the in-
sample structural parameters {I', Y} in Table 3 and the first step of § 5.1.1 for each except the final year
of the sample. The overall sum of squared pricing errors is then computed as the aggregate of the 52
sums of squares from the first step. This out-of-sample methodology is consistent with Huang and Wu
(2004). The speed of adjustment or speed of mean reversion of volatility parameter [3 estimate most
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often lies between 1.17 and 2.40, indicating that the half-life of variance shocks is within five to ten
months. The long-term mean value of variance or unconditional variance 6 is between 0.01 and 0.03.
The volatility of variance or volatility of volatility ¢ is between 0.37 and 0.83 while the correlation §
between the index returns and return variance is within — 0.78 and — 0.50. The jump diffusion
parameter estimates in Table 3 include the instantaneous variance conditional on no jumps op, the risk-
neutralized mean jump size 9%*, the jump frequency parameter w*, and the jump dispersion parameter
&. Estimates of gp range within 11.09% and 33.31% and those of 9% between 0.00 (virtually positive
and negative jumps cancel out in 2005, 2007 and 2015) and — 0.08 (negative average largest jump in
2008). Estimates obtained for w® are between 0.50 (lower number of jumps in 2005, 2007 and 2015)
and 0.93 (greater number of jumps in 2006 and 2017) while those obtained for € range within 0.04
(year 2008) and 0.11 (in 2006 and 2017). The overall in-sample implied volatility root mean squared
error loss function (IVRMSELF) numerical value computed is 1.2476% versus 1.4368% obtained
using the same data set for the Christoffersen et al. (2009) two-factor stochastic volatility model. This
represents an improved pricing error accuracy of 13.17%. The overall out-of-sample IVRMSELF
computed is 1.3745% compared to 1.5692% computed using the same data set for the Christoffersen et
al. (2009) two-factor stochastic volatility model. This represents an improved pricing accuracy of
12.41%. The out-of-sample comparison between the stochastic volatility with random jumps model
tested here and the two-factor stochastic volatility model of Christoffersen et al. (2009) leads to the
conclusion that the model with random jump processes in this paper most effectively contributes in
modeling option data in a market enlarged with higher-order moment swaps. The results in Tables 3
and 6 show that the stochastic volatility with random jumps model captures more of the variability in
the option data, allows for richer modeling of maturity and moneyness, and offers very rich patterns in
the term structure of the conditional variance. These results are confirmed by an excellent empirical fit
to the time series as well as to the cross-sectional dimension using a tractable and parsimonious
stochastic volatility with random jumps model.

5.2. Testing the Relative Performance of Various Hedging Strategies

This section tests the relative performance of alternative hedging strategies using real data on variance
swap rates and European call and put option prices. First, the well-known delta hedging strategy driven
by one instrument, the underlying asset, is considered and called HSp. At time t, a long position is
taken on contingent claim & with exercise price E and maturity 7. To hedge this exposure, a short
position in HP = G /AP shares of the stock is taken and the residuals R, = S, — HE P, is invested in
the money market account. At the subsequent time t + At where At = 1/360 for one-day rebalancing
of the portfolio or At = 1/(360 X 288) for five-minute rebalancing, the hedging error (HE) of this
strategy is computed as:

HSp(t + At) = (¢ — Sp) — (HE (Peyar — Pr) + aR At + yHE PiAt). (24)
Second, a hedging strategy driven by two instruments, a variance swap and its underlying state
variable which here is the stock price, is considered and referred to as HS(p y5z2). The variance swap is
issued at time t and has the same maturity date 7 as the option contract, thatis n = ¥. A long position

. . . . . . o le
in the contingent claim & at time t is delta-hedged by taking a short position in HY = P shares of the

2 06 . . . .
HMSR® = gan variance swaps and investing the residuals R, = &, —
t dMSR? t t

HP P, — HYSR*UMSR® i the money market account. Because the swap is issued at time ¢, UMSR* = 0 .
The hedging error (HE) of this strategy at time t + At is computed as follows:

HS(pmsrz) (t + A) = (Siar — Sp)

2 2 2
—(HP (Pyyar — Py) + HYSRY (USRS — OMSRT) + aR, At + yHE PAL). (25)

stock, a short position in
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The strategy HS(p,MSRZ) is compared to a cross-hedge strategy to evaluate its relative

performance in hedging volatility risk in the presence of jump risk. The underlying stock and another
option contract named @ are used in this two-instrument hedging strategy. The vega neutrality of the
portfolio is assured first using option @. Next, the portfolio is made delta-neutral by buying or selling
the underlying stock (Bakshi ef al. 1997). This cross-hedge strategy or delta-vega hedging is referred to
as HS(P,@).

Third, a hedging strategy driven by multiple instruments which include the bipower variation
swap and mth-order moment swaps (3 <m < 12) in the replicating portfolio is considered. This
strategy is referred to as HS(P,MSRZJMSRtIZ). The hedging error (}{€) of this strategy is given by:

HS(P,MSRZ,MSRL%Z)(’: +At) = (Sprar — Sp)

2 2 2 MSRF (. MSRK MSRF
— [HE (Proae — o) + HYST (UNSE — OISR + 512, WY (0537 — 0 )]

t+At
—(a t+ t),
(aR;At + yH{ P At) (20)
k k
where R, = &, — HP P, — HMSR*pMSR® _ y12 HiWSRt UItWSRt = &, — Hf P, because for all values of
k
k, OMSR® = UItWSR‘ = 0 as the swap inception date is time t.

Finally, to hedge against random jumps, a special case of the multi-instrument strategy is
considered with m = 3, which contains only the third-order moment swap and is referred to as
HS (5 msr2 msr3)- The hedging error (FE) of this special strategy is computed as follows:

2 2 2
HS(p msrz,msrz) (E + At) = (Sprar — G¢) — [HE (Peyac — P) + HESE(UREE — UFSR7)]

MSR3

3 3
[ (U = 0) + aR,At + yHE P.A] (27)

_[Ht t+At

The results of these various hedging strategies are summarized in Tables 7-8. The key
contribution of this paper is empirical and is illustrated in Tables 7-8 which clearly shows that

Table 8:  Results of Alternative European Options Hedging Strategies

Mean Hedging Error Mean Absolute Error Root Mean Squared Error
HE MAE RMSE
Moneyness | liedging 30 90 180 30 90 180 30 90 180
Strategy

Panel A: European Call Options Hedging Errors
P/E =1.00 HSp -0.191 | -0.094 | -0.038 | 2.015 | 2.013 | 2.017 3.025 3.002 | 3.016
HS (p msr2) 0.062 | -0.017 | -0.016 | 0.406 | 0.271 0.211 0.607 | 0374 | 0.318

HS (p msr2 msr3 0.059 | -0.016 | -0.015 | 0.398 | 0.264 | 0.202 | 0.581 0.367 | 0.305
HS(p g -0.068 | -0.019 | -0.018 | 0.447 | 0.285 | 0.213 | 0.629 | 0426 | 0.339

P/E = 0975 |HS, 20.124 | -0.067 | -0.027 | 2161 |2.191 |2231 |3.046 |3.131 | 3211
HS(puspzy | 0051 | -0.015 |-0.013 | 0428 |0256 |0.208 |0582 |[0417 | 0298

HS (p msr2 msr3 0.049 | -0.012 | -0.011 | 0.396 | 0.241 0.194 | 0537 | 0385 | 0.279
HS(p g 0.058 | 0.019 0.019 | 0458 |0.269 |0.214 |0.635 | 0439 |0.328

P/E =095 |HSp -0.125 | -0.048 | 0.002 | 2.109 |2.327 |2436 |3.007 |3.358 | 3.463
HS(p ysr2) 0.074 | -0.041 |-0.032 | 0.685 | 0.463 | 0428 | 0936 |0.739 | 0.642

HS (p ysrzwsry] 0067 | -0.035 | -0.027 | 0.648 | 0421 |0395 |0902 [0713 |0.604

HSp.0) 0.095 | 0.048 0.039 |0.762 | 0.578 | 0.469 1.054 | 0.847 | 0.709
Panel B: European Put Options Hedging Errors
P/E =1.10 HSp -0.155 | -0.108 | -0.068 | 0.839 1.017 1.217 1.463 1.614 1.873

HS(puspzy | -0.038 | -0.039 | -0.008 |0.547 |0.653 |0.748 |0.838 |[0977 | 0984
HS (p ysrz psry] 0027 | -0.032 | -0.007 | 0.538 | 0.624 |0719 | 0822 [0965 | 0978
HS(p,9) -0.049 | -0.048 | -0.009 |0.652 [0.886 |0973 |0948 |1.142 | 1.285
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Mean Hedging Error Mean Absolute Error Root Mean Squared Error
HE MAE RMSE
Moneyness | Liedging | 5, 9% | 180 | 30 % | 180 | 30 90 180
Strategy

P/E =1.08 HSp -0.192 | -0.116 | -0.048 | 1.008 | 1.184 | 1.362 | 1.635 | 1.709 | 2.018
HS (p,msr?) -0.046 | -0.048 | -0.007 | 0.614 |0.819 |0.794 |0.878 | 0.991 1.052

HS (p msrzmsg3| 0038 | -0.039 | -0.006 | 0.665 | 0.735 | 0.788 | 0.863 | 0.984 | 1.035

HSp ) -0.057 | -0.049 | -0.008 | 0.787 | 0916 |0.953 | 1.137 | 1.268 | 1.406

P/E = 1.05 HSp -0.221 | -0.094 | -0.037 | 1.206 | 1.354 | 1.515 | 1.876 |2.027 | 2.205
HS (p,msr?) -0.059 | -0.021 | -0.002 | 0.768 | 0.774 | 0.856 | 1.038 | 1.046 | 1.092

HS (pmsr2msg3) 0057 | -0.017 | -0.001 | 0.735 | 0.769 | 0812 | 1.012 | 1.028 | 1.034

HSp g -0.068 | -0.028 | 0.003 1.003 1.109 1.294 1.337 1.429 1.501

P/E =1.025 |HSp -0.222 | -0.088 | -0.027 | 1.471 1.531 1.659 | 2.269 | 2272 |2416
HS (p,msr?) 0.049 | -0.015 |-0.007 | 0.878 | 0.841 | 0.757 | 1382 | 1.164 | 1.119

HS (pmsr2msg3) 0045 | -0.012 | -0.006 | 0.872 | 0.833 | 0.746 | 1.358 | 1.118 | 1.104

HSp g -0.058 | -0.017 | -0.008 | 1.187 1.175 1.213 1.514 1.606 1.713

Notes: The values of the mean hedging error H'E, the mean absolute error MAE and the root mean squared error RMSE are
displayed in this Table for various hedging strategies executed on European options written on the S&P 500 index.
HSp is a delta hedging strategy on the underlying stock. HS(p visgz2) is a two-instrument strategy, HS(p sz msgr3) 18

a three-instrument strategy, and HS(p gy is the cross-hedging strategy. The third-order non-central risk-neutral
moment at each point in time is used to approximate the third-order moment swap rate. The deltas of the hedging
instruments are drawn from the estimates of the model in Table 3. Maturities considered are 30, 90 and 180 days.
Hedging errors are computed each day with daily rebalancing from 1/2003 to12/2017.

the hedging strategies involving higher-order moment swaps perform better across all moneyness and
maturity categories. Even though the moment swap rates in equations (4) and (5) are obtained by
convergence in probability, there is no evidence of model misspecification and the results of the
hedging strategies are robust. The mean hedging error moves from negative (delta hedged case) to
positive or very close to zero because of better hedging and not because the new tools used over hedge.
An examination of the left tail of the distribution of the hedging errors (H'E) of strategy HSp confirms
the superiority of strategies HS(p ysg2 msgs) and HS(p 52 msrp2). consistent with the theory that jump

risk is priced by the market. Hence, strategies HS(pysp2 msg3) and HS(P,MSRZ,MSRtlZ) adequately
captures the mean jump risk premium.

6. Conclusions

This paper provides the evidence for the importance of considering stochastic volatility, random jumps,
and higher-order moment swaps in the pricing and hedging model. The model considered here assumes
jumps to occur in the price process. A model with correlated jumps between the asset return and its
volatility is being treated and tested in a separate paper. The model is tested using return data as well as
European call and put option data on the S&P 500 index. Pricing accuracy is assessed by imposing
consistency between physical and risk-neutral estimates. Using a two-step iterative approach, the paper
first filters latent model variables and then uses these variables to estimate model parameters. These
two steps are iterated until there is no further improvement in the aggregate objective function. An
integrated approach is used by analyzing option data as well as the underlying return data in the
calibration process. The results of the empirical tests show that adding jump components to a stochastic
volatility model in a market enlarged with higher-moment swaps leads to a more realistic modeling of
conditional higher moments as well as the moneyness and maturity effects, an improvement of the
modeling of the term structure of the conditional variance, and a superior model pricing performance.
Short-term option prices are critically influenced by the mean jump risk premium. The model fit to the
time series data and cross-sectional dimension is outstanding, a confirmation of the model’s ability to
capture more of the variability of the option data. The root mean squared errors reported both in-



24 International Research Journal of Finance and Economics - Issue 176 (2019)

sample and out-of-sample are much smaller than those reported under the two-factor stochastic
volatility model. Moreover, the test results confirm that jump risk is priced by the market.

The performance of alternative hedging strategies is evaluated using European options and
variance swaps data written on the S&P 500 index. The results show that to hedge against stochastic
volatility and random jumps, the self-financing portfolio must contain variance and higher-order
moment swaps. Under this condition, a perfect hedge of derivative securities can be achieved when the
state variable follows the stochastic volatility with random jumps model in a market enlarged with
higher-order moment swaps. The key new contribution of this paper is that hedging strategies, driven
by the stochastic volatility with random jumps model in a market enlarged with higher-order moment
swaps, perform better across all moneyness and maturity classes. The calibration methodology adopted
leads to computed pricing and hedging errors that are much lower than those under the two-factor
stochastic volatility model. This research shows the importance of considering stochastic volatility,
random jumps, and higher-order moment swaps in the pricing and hedging model.
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