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Abstract 

 

This paper tests the pricing accuracy and the hedging performance of the stochastic 

volatility with random jumps model in markets extended to contain swap contracts whose 

payoffs depend on the realized higher moments of the state variable. Using a two-step 

iterative approach, latent model variables are first filtered and then used to estimate the 

model parameters. The tests on European options and variance swaps written on the S&P 

500 index show superior pricing accuracies in-sample and out-of-sample and jump risk is 

priced. Hedging strategies involving higher-order moment swaps perform better across all 

moneyness and maturity classes. 
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1.  Introduction 
Moment swaps are derivatives whose payoff depends on the realized higher moments of the underlying 

state variable. This payoff depends on the powers of the daily log-returns and allows moment swaps to 

provide protection against various types of supply and demand shocks in capital markets. Variance 

swaps are created in the case of squared log-returns. Variance swaps are today liquidly traded, driven 

by different types of state variables and offer protection against the volatility regime fluctuations. In 

addition to the variance, skewness, kurtosis and higher-order moments play important roles in the 

distribution of asset prices. Higher-order moment derivatives can be useful to protect against 

inaccurately estimated higher moments such as skewness and kurtosis. Doffou (2019), Rompolis and 

Tzavalis (2017), and Schoutens (2005) show that the classical hedge of the variance swap in terms of a 

position in a log-contract and a dynamic trading strategy can be significantly enhanced by using third-

order moment swaps. 

Recent studies suggest that power-jump assets are the natural choice to complete the market. 

For instance, an incomplete Levy market where power-assets of any order can be traded will yield a 

complete market. Power assets and realized higher moments are highly linked and they are virtually the 

same in a discrete time framework (Corcuera et al. 2005). 

There has been a proliferation of studies extending the Black-Scholes (1973) option pricing 

model. But only a few of these studies addressed hedging contingent claims under more general 

assumptions about the state variable stochastic process. Well known examples of such studies are the 

stochastic volatility (SV) model of Heston (1993), the SV and random jumps model (SVJ) of Bates 

(1996), and the SV, stochastic interest rates and random jumps model of Doffou and Hilliard (2001). 
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Other studies have focused on the pricing formula for moment swaps. For example, Zhu and Lian 

(2011) proposed a closed-form solution to the variance swap under the Heston model. Zheng and 

Kwok (2014) derived the moment-generating function (MGF) for the Heston model with simultaneous 

jumps in the asset price and variance processes. Pun et al. (2015) obtained the MGF for models with 

mean reversion in asset price, multi-factor stochastic volatility and simultaneous jumps in prices and 

volatility factors. Using delta hedging strategies in an incomplete market cannot lead to a perfect hedge 

against jump risk and volatility risk linked to a position in contingent claims. 

Locally risk-minimizing delta hedging strategies which attempt to hedge the option contract 

using only the state variable and minimizing the variance of the cost process of a non-self-financed 

hedging position are not adequate. In the presence of jumps, these strategies perform very poorly like 

the classic delta hedging strategies (Tankov et al. 2007). Other hedging strategies use option contracts 

to reduce or eliminate volatility risk (Bakshi et al. 1997) or protect against jump risk (Coleman et al. 

2006; Cheang et al. 2015). Cross hedging strategies or delta-vega hedging can totally remove an option 

contract exposure to volatility risk but not its exposure to jump risk. Jump risk can be hedged either by 

using a risk-minimization strategy (Coleman et al. 2006; Tankov et al. 2007) or by discretizing jump 

sizes to compute the hedge ratios of the other options (Utzet et al. 2002). But these two methodologies 

are limited. First, they do not characterize the maturity and moneyness of the option contracts to be 

used to efficiently and effectively set up the hedge. Further, these two approaches do not pick up the 

options’ exposure to volatility risk. Finally, Empirical evidences show that these two methods do not 

outperform the delta hedging strategy (Cheang et al. 2015). 

The model considered here assumes jumps to occur in the price process. However, the literature 

has already provided solution to correlated jumps between the asset return and its volatility. Such a 

well-received consideration is being tested in a separate paper. This paper tests empirically the 

stochastic volatility with jumps (SVJ) model of Bates (1996) within the framework of Rompolis and 

Tzavalis (2017) which offers a different approach to hedge derivatives under more general assumptions 

of the state variable process. Under this approach, perfect hedging strategies of contingent claims under 

stochastic volatility and random jumps can be achieved by extending the market to contain swap 

contracts whose payoffs depend on the realized higher moments of the state variable price process. 

Hence, volatility and jump risks are hedged simultaneously without the need to rely on the well-known 

risk minimization criterion. Most specifically, a derivative price exposure to stochastic volatility and 

random jumps can be effectively hedged by including in the self-financing portfolio variance swap 

contracts and higher-order moment swap contracts respectively. Jumps size is random and therefore 

enough higher-order moment swaps are needed to achieve a perfect hedge. In the limit, as the number 

of higher-order moment swaps increases to infinity, the value of the self-financing hedging portfolio 

converges to the value of the derivative, making the market quasi complete in the spirit of Bjork et al. 

(1997) and Jarrow and Madan (1999). 

Constructing perfect hedging strategies under an incomplete market model has been addressed 

by a few studies using new assets. The market can be completed if power jump assets are added 

(Corcuera et al. 2005). But, the prices of power jump assets are not observable in the market and 

therefore cannot be traded (Olhede et al. 2010). Even though the prices of higher-order moment swaps 

are not directly available and observable in the market, higher-order moment swaps are directly 

affected by the state variable price changes and so can be observed and traded in capital markets. 

Consequently, it makes sense to evaluate hedging strategies driven by higher-order moment swaps. 

The model to be tested in this paper extends the above listed studies in many ways. First, it accounts 

for stochastic volatility and random jumps. Hence, both volatility risk and jump risk are hedged. To 

hedge both risks requires the use of a new swap contract called the bipower variation swap which helps 

distinguish a variance swap exposure to jump risk and volatility risk. Second, hedging is extended to 

option pricing using the Black-Scholes methodology. The implementation of these hedging strategies 

in a market enlarged with higher-order moment swaps leads to specific option prices. Finally, the 

performance of the proposed hedging strategies is assessed using real data.  
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In practice, higher-order moment swaps are not always available and illiquidity and trading 

costs are important considerations. Counterparty risk must also be factored in when more financial 

derivatives are purchased for hedging. This paper provides an evidence for the importance of 

considering stochastic volatility, random jumps, and higher-order moment swaps in the pricing and 

hedging model. The empirical results obtained here show that adding jump components to a stochastic 

volatility model in a market enlarged with higher-order moment swaps leads to a more realistic 

modeling of conditional higher moments as well as the moneyness and maturity effects, an 

improvement of the modeling of the term structure of the conditional variance, and a superior model 

pricing performance. A perfect hedge of derivative securities can be achieved when the state variable 

follows the stochastic volatility with random jumps model in a market enlarged with higher-order 

moment swaps. The key contribution of this paper is that hedging strategies, driven by the stochastic 

volatility with random jumps model in a market enlarged with higher-order moment swaps, perform 

better across all moneyness and maturity classes. 

This paper is organized as follows. Section 2 defines moment swaps. Section 3 introduces the 

pricing and hedging model. The model parameters are estimated in Section 4. Section 5 tests the in-

sample and the out-of-sample pricing accuracy as well as the hedging performance of the model. 

Finally, Section 6 concludes the paper. 

 

 

2.  Moment Swaps 
Suppose a liquidly traded asset (stock or stock index) with a continuous dividend yield  � ≥ 0 has a 

price process modelled by an Ito semi-martingale � = ��� , 	 ≥ 0
 such that � > 0 and �� > 0. In 

addition to this asset, a bond or money market account with a constant compound interest rate 
 is 

available with a price process Θ = �Θ� = ��� , 	 ≥ 0
. Consider � equally spaced time intervals of 

length ∆	  such that 	� = �∆	, with � = 0, 1, 2, … . , �  and Ψ = �∆	 is the expiration date of the 

derivative contract written on the state variable price ��. The price of the state variable at each interval � is denoted �� for simplicity. In practice, the 	� are the daily closing times and �� is the closing price at 

day �. It follows that the daily log-returns are given by  ln���� − ln���� �,   � = 1, 2, … . , �.     
Assume futures contracts written on the state variable price � exist with expiration date Ψ. By 

risk-neutral valuation, the futures contract price process follows  !� = ���"#$
 − �%$Ψ − 	%. For 

simplification, the futures price at the discrete time 	� is denoted !�. The &th-moment swap on the 

stock is a contract in which the two counterparties agree to exchange at maturity a nominal amount 

multiplied by the difference between a fixed level contract price and the realized level of the &th-order 

non-central sample moment of the log-return over the life of the contract. The payoff function is 

defined by 

'()* = +, ∑ ln . )/
)/012*3�4  , (1) 

where +, is the nominal or notional amount and � is the number of segments of length Δ	 within the 

time interval 60, Ψ7 , 	 ∈ 60. Ψ7. 
For = 2 , equation 1 gives the expression of the 2�9-moment swap or variance swap. Variance 

swaps are basically forward contracts in which the counterparties agree to exchange a notional amount 

multiplied by the difference between a fixed variance and the realized variance. The fixed variance is 

the variance swap rate or the variance forward price. Variance swaps offer protection against volatility 

shocks. The 3;9- moment swap is linked to the realized skewness and offers protection against 

changes in the symmetry of the underlying distribution. Changes in the tail behavior of the underlying 

distribution created by the occurrences of unexpected large jumps are shielded by the 4	ℎ-moment 

swap related to the realized kurtosis. If the futures price is the state variable driving the moment 

derivatives, then the payoff function of the &th-moment swap on the futures is 
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'(>* = +, ∑ ln . >/
>/012*3�4  (2) 

Using the link between the stock and futures prices, !� = ���"#$
 − �%�Ψ − 	��, and setting 

the notional amount +, to one, the relationship between the futures and the stock moment swaps is 

derived as follows 

'(>* = ∑ ?−$
 − �%∆	 + ln . )/
)/012A*3�4 = ∑ ∑ B&ℎ C*D4E3�4 $−$
 − �%Δ	%D ln . )/

)/012*�D =
∑ B&ℎ C*�FD4E $−$
 − �%Δ	%D'()$*�D% − $
 − �%Ψ$−$
 − �%Δ	%*� + &$−$
 − �%Δ	%*� Ω)   

where  Ω) = ∑ ln . )/
)/0123�4 = ln B)H

)I C = ln$�J% − ln$�E%. 

The term Ω) is the log-contract on the stock and plays a critical role in the hedging of moment 

swaps. If Δ	 to the higher order powers is very small and therefore negligible, the above listed 

expression can be approximated to  

'(>* ≈ '()* − &$
 − �%Δ	'()$*� %
 (3) 

Let $ℋ, ℒ, N% be a filtered probability space where ℒ = �ℒ� , 	 ≥ 0
 is the filtration which 

satisfies the usual conditions and N the physical probability measure. In this economy, the dynamics of 

the log-price process O = ln � satisfies Assumption 1 of Ait-Sahalia and Jacod (2009). Hence, as the 

time interval gets closer to zero, the terminal values of higher-order moment swaps in discrete time 

converge to their continuous time values. This convergence justifies an analysis in continuous time of 

these terminal values defined in discrete time.  

The quadratic variation of the log-price process O in the time interval 60, Ψ7 is defined as 〈O, O〉E,J ∈ R∗$N% where R∗$N% is the R∗ norm on the physical probability measure N. The power 

variation of O at the &th order in the interval 60, Ψ7 is defined by ∑ $ΔO�%* ∈ R∗$N%,ET�UJ   for  & ≥ 2. This establishes the existence of continuous time swap contract rates and their related expected 

returns. In the absence of arbitrage, there is a risk-neutral probability measure (equivalent martingale 

measure) V, continuous with respect to the physical probability measure N, under which 〈O, O〉E,J and ∑ $ΔO�%*ET�UJ  can be priced, that is  〈O, O〉E,J ∈ R∗$V% and ∑ $ΔO�%*ET�UJ ∈ R∗$V% for  & ≥ 2. 

In continuous time, the variance swap payoff given by equation (1) when & = 2 converges in 

probability to the annualized quadratic variation of the log-price process which is  
 
J 〈O, O〉E,J (Protter, 

1990). Therefore, under the equivalent martingale measure V, the variance swap rate in continuous 

time, '(W�F, is the risk-neutral expected value of  
 
J 〈O, O〉E,J given by 

'(W�F = X�V B  
J 〈O, O〉E,JC (4) 

The payoff, in continuous time when � grows to infinity, of the &th-order moment swap given 

in equation (1) for & ≥ 3 converges in probability to 
 
J ∑ $ΔO�%*ET�UJ . Consequently, under the 

equivalent martingale measure V, the continuous time &th-order moment swap rate at time 	, '(W�*, 

is given by 

'(W�* = X�V B  
J ∑ $ΔO�%*ET�UJ C (5) 

The variation of the discontinuous part of the log-price process O which is 
 
J ∑ $ΔO�%FET�UJ  

cannot be captured in the higher-order moment swap defined in equation (5). The annualized quadratic 

variation of the log-price process 
 
J 〈O, O〉E,J which contains the variation of this discontinuous part can 

be in fact decomposed into a continuous part and a discontinuous part as follows 
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J 〈O, O〉E,J =  

J 〈O, O〉E,JY +  
J ∑ $ΔO�%FET�UJ , (6) 

with 〈O, O〉Y being the continuous part of 〈O, O〉. 
The decomposition given in equation (6) above has been proved in Barndorff-Nielsen and 

Shephard (2004), Ait-Sahalia and Jacod (2009), and Rompolis and Tzavalis (2017). Given the above 

decomposition, a new swap contract called bipower variation swap was introduced in Rompolis and 

Tzavalis (2017) to price the discontinuous part of 〈O, O〉. In discrete time, the terminal value at time Ψ 

of the bipower variation swap takes the following expression assuming a notional amount of one: 

'(),JF = Z∑ ln . )/
)/012F3�4 − [

F B 3
3� C ∑ \ln )/

)/01\3� �4 \ln )/]1
)/ \^. (7) 

The volatility risk premium and the jump risk premium which both affect the variance swap rate can 

now be analyzed separately using the bipower variation swap. 

The bipower variation swap rate at time 	 in continuous time is given by 

'(W�,_`aF = X�V B  
J ∑ $ΔO�%FET�UJ C, (8) 

with '(W�F − '(W�,_`aF = X�V B  
J 〈O, O〉E,JY C. (9) 

Based on equation (9), the terminal value of a portfolio composed of a long position in a 

variance swap contract and a short position in a bipower variation swap contract is a function of only 

the continuous component of the quadratic variation of χ . Hence, the market price of volatility risk can 

be assessed given the value of this portfolio. 

 

 

3.  Pricing and Hedging Model Driven by Higher-Order Moment Swaps  
The higher-order moment swap contracts introduced in the previous paragraph can be used to price and 

hedge derivative securities which include European options, barrier options, volatility swaps, and 

volatility swap options. The state variable which here is the stock price is assumed to follow the 

stochastic volatility with jumps (SVJ) model of Bates (1996). Jumps do occur due to supply and 

demand shocks in the stock market. The occurrence of jumps causes the distribution of the spot price to 

be more skewed and kurtotic than the lognormal but does not affect the risk-neutralized expectation. 

The model can accommodate small and large jumps as well as the frequent and infrequent arrival of 

information in the stock market. The stochastic evolution of the instantaneous conditional volatility, a 

randomization known to induce excess kurtosis, directly affects contingent claims pricing biases. The 

proposed Bates model is part of a family of models with independent fat-tailed shocks to the stock 

price. Accordingly, the dynamics of the stock price �� and that of its variance ℧� follow the stochastic 

processes   

d)e
)e = $f�) − gf̅%9	 + i℧�dk ,� + l�dm� (10) 

9℧� = n$o − ℧�%9	 + pi℧�9kF,�, (11) 

where f�) = 
 − � + q�℧� + g�f̅ − f̅V� ; q� is the market price of risk; l� is the random percentage 

jump conditional upon a Poisson-distributed event occurring, where 1 + l� is log-normally distributed: ln$1 + l�% ~+�ln�1 + ls� − 0.5uF , uF� = +$fl, pvF% , with E$l�% = ls ; ω is the frequency of Poisson 

events; u is the jump dispersion parameter; m� is a Poisson counter with intensity ω : Prob$9m� = 1% =
g9	 and  Prob$9m� = 0% = 1 − g9	 ; f̅ = exp Bfl +  

F pvFC − 1 and f̅V is the risk-adjusted mean 

value of f. The stock price process is like the geometric Brownian motion process most of the time, 



International Research Journal of Finance and Economics - Issue 176 (2019) 13 

but on average g times per period the price jumps discretely by a random percentage. Jump random 

variables are uncorrelated, i.e., $9m, l% = 0 ,  ���$9k , 9m% = ���$9k , l% = 0.  

Because the increments to a standard Brownian motion 9k  and 9kF are assumed to be 

correlated with correlation coefficient �, i.e., ���$9k , 9kF% = �, there is a third Brownian motion 

process k� independent of  k  such that  9kF,� = �9k ,� + i1 − �F9k�,� . The stochastic 

discount factor process � for the proposed model can be expressed as follows 

d�e
�e = −$
 + gf̅�%9	 − q�i℧�9k ,� − �℧i℧e

�i ��� 9k�,� + l�,�9m�, (12) 

where q℧ picks up the market price of volatility risk, f̅� is the mean jump size given by 

f̅� = �"# Bfl� +  
F pv�

F C − 1 and  ln�1 + l�,�� ~+�fl�, pv�
F �. The mean jump size f̅� is constrained 

to zero in the spirit of Pan (2002) and Broadie et al. (2007) which leads to a constant value for the 

jump frequency parameter g under the risk-neutral probability measure V. The closed-form solutions 

of the rates of these swaps and the expected value changes of positions in them at time zero are 

provided in Rompolis and Tzavalis (2017).  

In the absence of arbitrage, the variance swap rate at time 	 ∈ 60, Ψ7  under the stochastic 

volatility and jump model is expressed as follows 

'(W�F =  
J .� ℧�9� + � l��F�

E
�

E 9m� + ,$	, ℧�% + �$	%2, (13) 

where  ,$	, ℧�% = ����℧� + $1 − ��%oV� ; �� = B1 − ����VC /��nV� ; oV and nV are respectively the 

risk-neutralized values of o and n ; � = Ψ − 	 ; and  �$	% = g��fFV� , with  fFV being the non-central 

second-order moment of  l�  under the risk-neutral probability measure V. The expected change in value 

of a long position in the variance swap at time zero under the physical probability measure N is given 

by  X�N�9℧������ , with  ℧����� = ����$'(W�F − '(WEF%  and further expressed as follows  

f�����9	 ≡ X�N�9℧������ = .
℧����� + �℧����
� �� ℧ q�℧ +  ¡0¢£

J �fF − fFV� 2 9	,   (14) 

where  q�℧ = p�q� + q℧ , fF is the second-order non-central moment of l�  under the physical 

probability measure N, and  fFV the risk-neutral measure of  fF.  

Equation (14) clearly shows that the expected change in value of a long position in a variance 

swap at time zero depends on a jump-component risk premium, the price of volatility risk q℧, and the 

market price of risk q�. The jump components are jumps related to the underlying stock price �. The 

expected excess value change f����� − 
℧�����
 is negative because  fF − fFV is negative and Carr and 

Wu (2010) showed that q�℧ is negative. The negative sign of fF − fFV is due to fvV < fv < 0  and 

pvF < �pvV�F
, with fvV and pvV being respectively the risk-neutral measures of fv and pv (Broadie et 

al. 2007). This is consistent with the fact that the variance swap pays when the stock price � suddenly 

decreases or increases because of jumps that occur due to supply and demand shocks in the stock 

markets. To protect against these unexpected supply and demand fluctuations, risk averse investors are 

willing to pay a premium to take long positions in the variance swap. 

Similarly, in the absence of arbitrage and under the stochastic volatility model, the bipower 

variation swap rate (when & = 2) and the higher-order moment swap rate (when & ≥ 3) are given by 

'(W�* =  
J B� l�¥*�

E 9m¥ + g�f*VC, (15) 

while the expected change in value at time 	 of a long position in these contracts at time zero is  

f����¦9	 ≡ X�N�9℧����¦� = .
℧����¦ +  ¡0¢£
J �f* − f*V�2 9	, (16) 
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where  f* is the &th-order non-central moment of l�  under the physical probability measure N and  f*V  

is the risk-neutralized value of f*.    

Equation (16) indicates that the expected excess value change of a long position in a bipower 

variation swap, given by f����� − 
℧�����
, is negative because fF − fFV is negative. In addition to 

being negative, the expected value change is smaller in magnitude than that of the variance swap 

because the bipower variation swap pays only when the stock price exhibits some jumps during the 

time segment 60, Ψ7 while the variance swap also picks up any increase in the spot variance ℧. Further, 

equation (16) shows that the expected excess value change of a long position in higher-order moment 

swaps, f����¦ − 
℧����¦
 with m ≥ 3, has the sign of the difference f* − f*V . Given the normality 

assumption of the log-jump size l� , f* and  f*V  exist for all values of &. In general, for higher-order 

moment swaps, the expected excess value change is strictly negative for even values of & and strictly 

positive for odd values of &, that is 

f����¦ − 
℧����¦ < 0, if & is even;f����¦ − 
℧����¦ > 0, if & is odd. (17) 

At time 	, the derivative security ¨ to be priced and hedged under the stochastic volatility and 

jump model has a price ¨� which depends on time 	, the underlying stock price �� and the spot 

variance ℧�, that is ¨� = ¨$	, �� , ℧�% with 0 ≤ t ≤ Ψ. The function ¨$. % is assumed to be continuous 

with partial derivatives of any order. The self-financing portfolio which replicates the price of the 

derivative security ¨� is assumed to be composed of the underlying stock, the money market account, 

the variance swaps, the bipower variation swaps, and the higher-order moment swaps. As a result, the 

implied vector of hedge ratios at time 	 is characterized by the quantity of the state variable �, the 

position in the bond or money market account Θ, the number of long positions in variance, bipower 

variation and higher-order moment (up to order &) swaps. Hence, the implied vector of hedge ratio at 

time 	, given the various positions taken at time zero, is expressed by 

Η� = BΗ�) , Η�¬, Η����� , Η����e� , … … … , Η����e¦C­
. To be able to replicate the contingent claim ¨, it is 

necessary to have an adequate finite but sufficiently large number ' of higher-order moment swaps 

such that for all 	 ∈ 60, Ψ7  
¨� = Η�)�� + Η�¬Θ� + Η�����℧����� + lim�→° ∑ Η����e¦�*4F ℧����e¦,  (18) 

with the hedge ratios given by ±�) = �¨
�) ,  

Η�¬ = Θ�� B¨� − Η�)�� − Η�����℧����� − lim�→° ∑ Η����e¦�*4F ℧����e¦C, 

Η����� = ��� �¨
����� , 

Η����e� = ��� BJ
F B ��¨

� �� )� − �¨
� �� )C − �¨

�����C  and 

Η����e¦ = ��� B J
*!C B �¦¨

� �� )¦ − �¨
� �� )C , for  & ≥ 3 .  

The expected return at time 	 of the derivative security ¨ is given in Rompolis and Tzavalis 

(2017) as  

X�N ?9¨�¨� A = 
9	 + ³ ln ¨
³ ln � $f�) + � − 
%9	 + ³ ln ¨

³℧���� �f����� − 
℧������9	 

+��� ZΨ
2 Z³F¨/´

³ ln �F − ³ ln ¨
³ ln �^ − ³ ln ¨

³'(WF^ Bf����e� − 
℧����e�C 9	 

+ lim�→° ∑ ��� B J
*!C B�¦¨/´

� �� )¦ − � �� ¨
� �� )C Bf����e¦ − 
℧����e¦C 9	�*4� . (19) 
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Equation (19) shows that the derivative security ¨ can be replicated in a market extended to 

contain variance swaps, bipower variation swaps and a number ' of higher-order moment swaps. The 

delta hedged gains of the self-financing portfolio will converge to zero if ' is large enough to make 

the market quasi complete, leading to the existence of a unique risk-neutral measure V under which the 

derivative ¨� can be priced (Jarrow and Madan 1999; Bjork et al. 1997). The price of the contingent 

claim ¨� can be derived by either adopting the Bates (1996) equilibrium approach or by following the 

Rompolis and Tzavalis (2017) methodology in eliminating all the stochastic terms in ¨�. In the 

absence of jumps (g = 0), equation (19) shows that taking a position in the underlying stock, the 

money market account and the variance swap contract, the derivative ¨ can be perfectly replicated. 

The contingent claim exposure to volatility risk is hedged by the positions Η�����
 held in 

variance swaps. But variance swaps are also exposed to jump risk and the position Η����e� held in the 

bipower variation swap adjusts the change in value of the derivative ¨� due to changes in the stock 

price as a result of the exposure to the same jump risk. The exposure of the contingent claim ¨� to 

jump risk is hedged by higher-order moment swaps. For all values of &, the hedge ratios Η����e¦ are 

the same for call and put options of the same exercise price and maturity date for the put-call parity 

technical arbitrage condition to hold. 

 

 

4.  Data 
Spot data on the S&P 500 index as well as real data on variance swap rates and European call and put 

option prices written of the S&P 500 index are used in this study. The option data set is from the 

OptionMetrics Ivy data base and spans from January 2003 to December 2017 for a total coverage of 

fifteen years. This data set is used to test the pricing accuracy of the model and to evaluate the relative 

performance of various hedging strategies. 

Daily closing option quotes from the Chicago Board Options Exchange are used each 

Wednesday and mi-quotes are computed as averages of the bid and ask quotes. The underlying index 

level is adjusted for dividends and then matched with each option quote. The adjustment for dividends 

is carried out by subtracting from the index level the present value of the future realized stream of 

dividends between the quote date and the maturity date of the option. For a given option maturity, the 

risk-free rate is computed via interpolation of available T-bill rates. To effectively carry out the 

empirical tests, only at-the-money (ATM) and out-of-the money (OTM) calls and puts are used 

because they are more actively traded than in-the-money (ITM) options. Options with less than one 

week to maturity are excluded from the sample. Option prices less than 3/8 are too close to tick size to 

reflect true option values and are therefore deleted from the sample. Option contracts with zero open 

interest, with extreme moneyness and those that violate various boundary and no-arbitrage conditions 

are discarded. The series of dividend yield � is derived from the sample and estimated using the put-

call parity technical arbitrage condition applied to the at-the-money (ATM) European options. The data 

for the variance swap rates written on the S&P 500 index provided by a major broker-dealer are daily 

closing quotes of variance swap rates traded at the over-the-counter market with maturity intervals � of 

1, 2, 3, 6, 9, 12, and 24 months from January 1, 2003 to December 31, 2017. These variance rate data 

are sampled weekly on every Wednesday to avoid the impact of weekday patterns on the estimation of 

the parameters. The quotes from the previous business day is used if a given Wednesday is a holiday. 

This classification generates 784 weekly observations for each series. Prices that reflect the illiquidity 

of the variance swaps market are deleted from the sample. The resulting descriptive statistics appear in 

Table 2. 

The filtered option data set is summarized in Table 1 with a total of 36,164 call option contracts 

and 35,988 put option contracts. Panels A - C in Table 1 are arranged over six moneyness (P/E)  
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Table 1: S&P 500 Index Call and Put Option Data 1/2003–12/2017 

 
 µµ¶ < ·¸ ·¸ < µµ¶ < ¹¸ ¹¸ < µµ¶ < º»¸ µµ¶ > º»¸ All 

 Panel A: Number of Call and Put Option Contracts 

 Call Put Call Put Call Put Call Put Call Put �/X < 0.975 539 - 3,771 - 3,098 - 3,682 - 11,090 - 0.975 < �/X < 1 1,159  3,103  1,086  901  6,249  1 < �/X < 1.025 1,231  2,595  937  723  5,486  1.025 < �/X < 1.05 941  1,851  735  474  4,001  1.05 < �/X < 1.075 692  1,389  602  414  3,097  �/X > 1.075 1,250  2,236  1,539  1,216  6,241  

All 5,812  14,945  7,997  7,410  36,164 35,988 

Panel B: Average Call and Put Prices �/X < 0.975 3.57 - 10.39 - 17.12 - 31.10 - 18.65 - 0.975 < �/X < 1 9.75  22.14  34.11  56.74  27.22  1 < �/X < 1.025 20.13  32.39  41.09  56.83  34.46  1.025 < �/X < 1.05 32.26  41.86  48.13  62.55  43.58  1.05 < �/X < 1.075 43.11  52.68  55.20  67.26  53.14  �/X > 1.075 56.18  62.47  64.12  72.59  63.57  

All 28.86  32.39  37.35  48.09  36.18  

Panel C: Average Implied Volatility from Call and Put Options �/X < 0.975 16.26 - 16.10 - 16.31 - 16.95 - 16.45 - 0.975 < �/X < 1 15.99  17.12  17.36  18.20  17.12  1 < �/X < 1.025 17.52  17.97  17.83  17.99  17.86  1.025 < �/X < 1.05 19.48  18.87  18.51  18.15  18.87  1.05 < �/X < 1.075 22.86  19.99  19.04  18.61  20.26  �/X > 1.075 32.47  22.54  19.81  18.93  23.16  

All 21.23  18.32  17.74 . 17.73  18.56  

Notes: The sample is composed of European call and put options on the S&P 500 Index. Closing quotes each Wednesday in 

the whole period running from January 2003 to December 2017 are used. Moneyness and maturity filters applied 

here include among others Bakshi et al. (1997). The implied volatilities are derived using Black-Scholes (1973). 

Only the call option data and prices are reported here. The put prices can simply be obtained using the put-call 

parity technical arbitrage condition. 

 
Table2: Variance Swap Rates Descriptive Statistics 

 
Maturity 

(months) 
Mean 

Standard 

Deviation 
Skewness Excess Kurtosis 

Weekly 

Autocorrelation 

1 20.457 6.527 0.724 0.733 0.948 

2 20.544 6.288 0.749 0.756 0.969 

3 20.641 6.024 0.683 0.639 0.977 

6 21.237 5.844 0.711 0.821 0.981 

9 21.615 5.729 0.642 0.478 0.983 

12 21.991 5.621 0.579 0.147 0.986 

24 22.592 5.480 0.530 -0.195 0.989 

Notes: Table 2 shows the mean, standard deviation, skewness, excess kurtosis, and weekly autocorrelation of the variance 

swap rate quotes in volatility percentage points on the S&P 500 Index at different maturities in months. Weekly 

data taken every Wednesday from 1/1/2003 to 12/31/2017 generated 784 observations for each series. 

 

categories and four categories in time to maturity (TTM) in days. The number of contracts in each category 

is reported in Panel A, the average call price in each category is reported in Panel B, and the average Black-

Scholes implied volatility in each category is reported in Panel C. The average implied volatility computed 

from the data set in Panel C, with maturity intervals of 1, 2, 3, 6, 9, 12, and 24 months, is needed to estimate 

the parameters of the stochastic volatility with jumps model and to calculate the third-order risk neutral 

moment f�V. Once the call price is known, the put price can be obtained using the put-call parity relation. 

Hence, only the call option data and prices are reported in Table 1 to make the table more readable. Each 

column of Panel C shows the evidence of the volatility smirk across moneyness. 
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5.  Empirical Investigations 
Two different investigations are conducted. The first assesses the pricing accuracy of the stochastic 

volatility with random jumps model (SVJ) in a market enlarged with higher-order moment swaps. The 

second tests the relative performance of various hedging strategies using real data on variance swap 

rates and European call and put prices. 

 

5.1. Testing the Stochastic Volatility with Random Jumps Model 

5.1.1. Model Parameters Estimation 

A two-step iterative approach is used to estimate the model parameters. The intuition driving this 

approach is to first filter latent model variables and then use these variables to estimate the model 

parameters. These two steps are repeated until there is no further improvement in the aggregate 

objective function. In a way, this approach is a modification of the implicit parameter estimation put 

forward in Bates (2000). This is the first time the two-step iterative approach has been improved to 

simultaneously estimate the model’s structural parameters not related to jumps, the model’s structural 

parameters related to jumps and the spot volatility. 

The implementation of the SVJ model poses the challenge of jointly estimating the model’s 

structural parameters not related to jumps, Γ = �n, o, p, �
 , the model structural parameters related to 

jumps or  vector of unknown jump parameters, Υ = �À), lsV, gV, u�, and the spot volatilities �℧�
. The 

unknown jump parameter À) is the instantaneous variance of the stock price conditional on no jumps. 

The model structural parameters (both jump related and non-jump related) and the spot volatilities are 

estimated using option and return data in a two-step iterative approach, an improvement of the 

approach adopted in Christoffersen et al. (2009) to account for jumps.  

Consider a sample of option data covering Á Wednesdays. In the implementation of the model, 

a full calendar year of option data are used and so Á = 52. Given a set of initial values for Γ , Υ, and �℧�
, a two-step iterative procedure is then initiated. In the first step, solve Á sum of squared pricing 

error optimization problems, given a set of model structural parameters Γ and Υ , as follows. 

 
Table 3: Parameter Estimates and Option Fit to the Stochastic Volatility with Jumps Model 

 
Parameter Estimates IVRMSELF 

Number 

of Obs Year Â Ã Ä Å ÆÇ ÈÉÊ ËÊ Ì 
In-

sample 

Out-of-

sample 

2003 1.2133 0.0367 0.6473 -0.5047 0.2198 0.0714 0.8429 0.1001 1.7119 N/A 5,389 

2004 1.5036 0.0274 0.3688 -0.6056 0.1548 0.0571 0.6743 0.0802 0.8177 0.9424 5,608 

2005 1.5802 0.0233 0.4997 -0.5935 0.1281 0.0005 0.5057 0.0605 0.5385 1.1256 6,309 

2006 1.6652 0.0158 0.5746 -0.6129 0.1281 0.0786 0.9271 0.1103 1.9832 2.0036 6,748 

2007 2.7494 0.0143 0.7694 -0.6990 0.1817 0.0007 0.5058 0.0604 0.6122 0.7875 8,103 

2008 1.5550 0.0118 0.8351 -0.7781 0.3331 -0.0801 0.6745 0.0408 1.1651 1.5645 8,865 

2009 1.9722 0.0184 0.6132 -0.5907 0.3148 0.0643 0.7586 0.0906 0.5886 0.7873 2,938 

2010 1.3446 0.0328 0.4709 -0.5373 0.2255 0.0572 0.6746 0.0801 1.0003 1.0502 4,176 

2011 1.1361 0.0637 0.5655 -0.5398 0.2420 -0.0701 0.5902 0.0507 0.6729 0.7802 3,888 

2012 1.3218 0.0675 0.5832 -0.6711 0.1780 0.0644 0.7588 0.0905 0.8245 1.0047 3,551 

2013 1.5973 0.0422 0.6821 -0.6606 0.1423 0.0645 0.7584 0.0907 0.5227 1.0661 3,427 

2014 2.3688 0.0350 0.5993 -0.6135 0.1418 0.0572 0.6748 0.0804 0.7001 0.7339 3,069 

2015 2.0940 0.0336 0.5264 -0.6618 0.1667 0.0006 0.5055 0.0606 0.5788 0.6336 3,035 

2016 1.0669 0.0429 0.4865 -0.5173 0.1583 0.0573 0.6747 0.0803 0.5863 0.6165 3,479 

2017 0.9954 0.0288 0.4736 -0.5840 0.1109 0.0787 0.9273 0.1104 0.8174 0.9465 3,567 

Total         1.2476 1.3745 72,152 

Notes: The parameters of the stochastic volatility with random jumps model are estimated year by year based on joint options and 

returns data. Wednesday closing option quotes from Table 1 are used in the computations of the speed of mean reversion 

β, the long-term mean value δ of the variance of the price ( ℧Í), the volatility of the variance (volatility of volatility) ϕ, 

and the correlation ξ between returns and return variance. Return data on the S&P 500 index are used in the 

computations of the jump-diffusion parameters which include the spot volatility σÎ, the mean jump size ϑsV
, the jump 

frequency parameter ωV, and the jump dispersion parameter ε. All the structural parameters reported above are estimated 

using the iterative two-step approach described in section 5. The in-sample root mean squared errors are calculated using 

the Black-Scholes Vega approximation to IVRMSELF. 
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Ï℧Ð�Ñ = arg min ∑ B¨v,� − ¨v$Γ, Υ, ℧�%CF /Ôv,�FÕev4 ,	 = 1,2, … , Á, (20) 

where the market-observed price of contract l on day 	 is ¨v,� and the associated model price is ¨v$Γ, Υ, ℧�%. The number of contracts available on day 	 is  +� while  Ôv,� is the Vega of contract l at 

time 	. The Vega Ôv,� is the sensitivity of the option calculated using the implied volatility from the 

market price ¨v,� of the option. In the second step, solve one aggregate sum of squared pricing error 

optimization problem, given a set of spot volatilities �℧�
 obtained in step 1, as follows: 

ÏΓÖ, ΥÐÑ = arg min ∑ B¨v,� − ¨v$Γ, Υ, ℧�%CFÕv,� /Ôv,�F  ,                         (21) 

where  + = ∑ +�Á�4 . 

The above two steps are repeated until there is no further improvement in the aggregate 

objective function in step 2. The scaling factor  1/Ôv,� is the key difference between this procedure and 

the Bates (2000) method of implicit parameters estimation. Because of this scaling factor, the objective 

function is seen as an approximation to implied volatility errors. The model price of the option can then 

be taken as a first-order approximation of the market price of the option around the implied Black-

Scholes volatility, that is: 

 
Table 4: Option Fit to the Christoffersen et al. (2009) Two-Factor Stochastic Volatility Model 

 

Year 
IVRMSELF 

Number of Observations 
In-Sample Out-Sample 

2003 1.8361 N/A 5,389 

2004 1.4693 1.9859 5,608 

2005 1.3527 1.7064 6,309 

2006 2.2145 2.2713 6,748 

2007 2.1364 2.1694 8,103 

2008 1.4227 1.7136 8,865 

2009 0.6317 0.8144 2,938 

2010 1.0439 1.0891 4,176 

2011 1.1752 1.6245 3,888 

2012 0.9791 1.0418 3,551 

2013 0.5536 1.1347 3,427 

2014 0.7011 0.8029 3,069 

2015 0.7143 0.7358 3,035 

2016 0.6018 0.6425 3,479 

2017 0.8472 0.9633 3,567 

Total 1.4368 1.5692 72152 

Notes: Table 4 shows the computed implied volatility root mean squared error loss function (IVRMSELF), both in-sample 

and out-of-sample, for the two-factor stochastic volatility model of Christoffersen et al. (2009) fitted to the same 

S&P 500 Index call and put data from 01/2003 to 12/2017. The values of the IVRMSELF computed for the 

stochastic volatility with random jumps model in Table 3 are much lower than those computed for the two-factor 

stochastic volatility model of Christoffersen et al. (2009). This is the hard evidence that the stochastic volatility 

with random jumps model fits better the option data than the two-factor stochastic volatility model in a market 

enlarged with variance swaps. 
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Table 5: Regression Analysis for Pricing Errors for European S&P500 Call and Put Options 

 
Regression Parameters Call Options Put Options 

Intercept 0.1284 (0.0114) 0.1308 (0.0132) Ç/×   - 0.1027 (0.0113) - 0.1041 (0.0133) µ¶ 0.0426 (0.0011) 0.0475 (0.0014) ØÙÚ 0.0211 (0.0113) 0.0212 (0.0132) ÛÜÝ. Þß 0.0493 0.0512 

Number of Observations 36,164 35,988. 

Notes: Pricing errors are regressed over moneyness (P/E), time to maturity (TM), and the previous day’s annualized 

standard deviation (VOL) of the S&P 500 index returns. The regression is run separately for call and put options 

using the equation below: 

��Xv$	% = åE + å )$�%
æç + åFè'v + å�éêë$	 − 1% + ìv$	%,   l = 1, … , +. 

Standard errors are in parentheses and are computed using the White (1980) heteroskedasticity consistent 

estimator. The previous day’s annualized standard deviations of the S&P 500 index returns are computed from 5-

minute intraday returns. 

 

¨v$Γ, Υ, ℧�% ≈ ¨v,� + Ôv,� Bpv,� − pv,�$Γ, Υ, ℧�%C, (22) 

where the implied Black-Scholes volatilities from the observed market price and from the model price 

are respectively pv,� and  pv,�$Γ, Υ, ℧�%, and Ôv,� is the Vega of the option which measures the Black-

Scholes sensitivity of the option price to changes in the volatility pv,�. This approximation will be used 

in the next paragraph to assess the model fit. 

 

5.1.2. Model Pricing Performance Assessment and Results 

Using the approximation put forward in equation (22), the model fit can be assessed by the value of the 

implied volatility root mean squared error loss function (IVRMSELF) given by: 

íéW'(Xë! ≡ . 
Õ ∑ Bpv,� − pv,�$Γ, Υ, ℧�%CFÕv,� 2 /F ≈ . 

Õ ∑ B¨v,� − ¨v$Γ, Υ, ℧�%CF /Ôv,�FÕv,� 2 /F
.  

This approximation to the implied volatility errors also used in Christoffersen et al. (2009), 

Schwartz and Trolle (2009), Carr and Wu (2007), is very useful and less costly numerically in a large 

scale empirical estimation undertaken here. 

Moneyness, maturity and volatility effects on pricing bias can be further examined using a 

regression analysis. The dependent variable is the percentage pricing error of a given option in the 

sample at a given date. The independent variables are the moneyness, the time to maturity and the 

volatility of the S&P 500 index return. The regression equation is given by  

��Xv$	% = åE + å )$�%
æç + åFè'v + å�éêë$	 − 1% + ìv$	%,l = 1, … … . +, (23) 

where ��Xv$	% is the percentage pricing error of option l on date 	; �/Xv and è'v represent 

respectively the moneyness and time to maturity of the option contract; éêë$	 − 1% stands for the 

previous day’s annualized standard deviation of the S&P 500 index return; and ìv$	% is the error term.  

Because this is a cross-sectional regression, the standard errors (in parentheses in Table 5) are 

computed using the White (1980) heteroskedasticity consistent estimator. The regression is run 

separately for calls and puts and the results are summarized in Table 5. Each independent variable has 

statistically significant explanatory power of the remaining pricing errors for both call and put options. 

Consequently, the pricing errors for each option category have some maturity, intra-daily volatility and 

moneyness related biases with different magnitudes. The pricing errors have the same sign and 

therefore biased in the same direction. The pricing errors relative to the S&P 500 index’s volatility on 

the previous day are negligible and practically stationary, confirming the importance of modeling 

stochastic volatility. The pricing errors for both call and put options reported confirm that modeling 
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both stochastic volatility and jumps is important. The adjusted WF of 4.93% for call options and 5.12% 

for put options show that the collective explanatory power of these independent variables is quite low. 

Table 3 shows the results of the parameter estimates and the stochastic volatility with random 

jumps model fit to the option data. Table 4 shows the Christoffersen et al. (2009) two-factor stochastic 

volatility model fit to the same data set. The tests of the stochastic volatility 

 
Table 6: In-Sample IVRMSELF by Moneyness and Maturity, 1/2003–12/2017 

 
 µµ¶ < 30 ·¸ < µµ¶ < 90 ¹¸ < µµ¶ < 180 µµ¶ > 180 All �/X < 0.975 1.2691 0.7753 0.6372 0.7538 0.7689 0.975 < �/X < 1 1.2487 0.6835 0.5926 0.6704 0.7931 1 < �/X < 1.025 1.1847 0.6639 0.6582 0.6947 0.8523 1.025 < �/X < 1.05 1.7645 0.7828 0.7963 0.7658 1.0948 1.05 < �/X < 1.075  2.1837 1.1069 0.8895 0.8394 1.2253 �/X > 1.075  2.9573 1.8684 1.3029 1.4257 2.1061 

All 2.1541 0.9886 0.8419 0.8951 1.2476 

Notes: The parameter estimates reported in Table 3 are used to compute the IVRMSELF for different degrees of 

moneyness and maturity. The values of the implied volatility root mean squared error loss function (IVRMSELF) 

computed are all lower than those reported in Christoffersen et al. (2009) for all degrees of moneyness and 

maturity.  

 
Table 7: Results of the European Options Hedging Strategy ïð�Ç,¶ðÞß,¶ðÞñºß� 

 

  Mean Hedging Error òósssss 
Mean Absolute Error 

MAE 

Root Mean Squared Error 

RMSE 

Moneyness 
Hedging 

Strategy 
30 90 180 30 90 180 30 90 180 

Panel A: European Call Options Hedging Errors �/X = 1.00 ±(�),����,���e1�� 0.053 -0.013 -0.011 0.326 0.237 0.184 0.519 0.306 0.272 

�/X = 0.975 ±(�),����,���e1�� 0.037 -0.009 -0.008 0.314 0.213 0.175 0.468 0.317 0.245 

�/X = 0.95  ±(�),����,���e1�� 0.054 -0.029 -0.021 0.436 0.387 0.369 0.725 0.541 0.481 

Panel B: European Put Options Hedging Errors �/X = 1.10 ±(�),����,���e1�� 0.019 -0.026 -0.004 0.355 0.438 0.527 0.610 0.729 0.781 

�/X = 1.08 ±(�),����,���e1�� 0.031 -0.033 -0.003 0.469 0.527 0.578 0.642 0.751 0.796 

�/X = 105 ±(�),����,���e1�� 0.049 -0.012 -0.001 0.528 0.559 0.602 0.793 0.808 0.811 

�/X = 1.025 ±(�),����,���e1�� 0.036 -0.005 -0.003 0.648 0.619 0.534 0.997 0.742 0.729 

Notes: The values of the mean hedging error ℋℰsssss, the mean absolute error MAE and the root mean squared error RMSE are 

displayed in this Table for the hedging strategy HS�Î,ùúû�ùúûü1�� executed on European options written on the S&P 

500 index. This strategy is driven by multiple instruments which include the bipower variation swap and mth-order 

moment swaps (3 ≤ m ≤ 12) in the replicating portfolio. The mth-order non-central risk-neutral moment at each 

point in time is used to approximate the mth-order moment swap rate. The deltas of the hedging instruments are 

drawn from the estimates of the model in Table 3. Maturities considered are 30, 90 and 180 days. Hedging errors 

are computed each day with daily rebalancing from 1/2003 to 12/2017. 

 

with random jumps model are implemented using 2003-2017 data on European call and put options on 

the S&P 500 index. The data set is disaggregated into fifteen separate samples containing each one full 

year of option data from 2003 to 2017.  Next, fifteen in-sample exercises are undertaken and then the 

first fourteen groups of parameter estimates are evaluated one-year out of sample. To get the out-of-

sample results, the out-of-sample spot volatilities for the following year are calculated using the in-

sample structural parameters �Γ, Υ
 in Table 3 and the first step of § 5.1.1 for each except the final year 

of the sample. The overall sum of squared pricing errors is then computed as the aggregate of the 52 

sums of squares from the first step. This out-of-sample methodology is consistent with Huang and Wu 

(2004). The speed of adjustment or speed of mean reversion of volatility parameter β estimate most 
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often lies between 1.17 and 2.40, indicating that the half-life of variance shocks is within five to ten 

months. The long-term mean value of variance or unconditional variance δ is between 0.01 and 0.03. 

The volatility of variance or volatility of volatility ϕ is between 0.37 and 0.83 while the correlation � 
between the index returns and return variance is within – 0.78 and – 0.50.  The jump diffusion 

parameter estimates in Table 3 include the instantaneous variance conditional on no jumps À), the risk-

neutralized mean jump size f̅V, the jump frequency parameter gV, and the jump dispersion parameter 

�. Estimates of À) range within 11.09% and 33.31% and those of f̅V  between 0.00 (virtually positive 

and negative jumps cancel out in 2005, 2007 and 2015) and – 0.08 (negative average largest jump in 

2008). Estimates obtained for gV are between 0.50 (lower number of jumps in 2005, 2007 and 2015) 

and 0.93 (greater number of jumps in 2006 and 2017) while those obtained for ε range within 0.04 

(year 2008) and 0.11 (in 2006 and 2017). The overall in-sample implied volatility root mean squared 

error loss function (IVRMSELF) numerical value computed is 1.2476% versus 1.4368% obtained 

using the same data set for the Christoffersen et al. (2009) two-factor stochastic volatility model. This 

represents an improved pricing error accuracy of 13.17%. The overall out-of-sample IVRMSELF 

computed is 1.3745% compared to 1.5692% computed using the same data set for the Christoffersen et 

al. (2009) two-factor stochastic volatility model. This represents an improved pricing accuracy of 

12.41%. The out-of-sample comparison between the stochastic volatility with random jumps model 

tested here and the two-factor stochastic volatility model of Christoffersen et al. (2009) leads to the 

conclusion that the model with random jump processes in this paper most effectively contributes in 

modeling option data in a market enlarged with higher-order moment swaps. The results in Tables 3 

and 6 show that the stochastic volatility with random jumps model captures more of the variability in 

the option data, allows for richer modeling of maturity and moneyness, and offers very rich patterns in 

the term structure of the conditional variance. These results are confirmed by an excellent empirical fit 

to the time series as well as to the cross-sectional dimension using a tractable and parsimonious 

stochastic volatility with random jumps model. 

 

5.2. Testing the Relative Performance of Various Hedging Strategies 

This section tests the relative performance of alternative hedging strategies using real data on variance 

swap rates and European call and put option prices. First, the well-known delta hedging strategy driven 

by one instrument, the underlying asset, is considered and called ΗS). At time 	, a long position is 

taken on contingent claim ¨ with exercise price X and maturity �. To hedge this exposure, a short 

position in  Η�) = ³¨/³� shares of the stock is taken and the residuals W� = ¨� − Η�)�� is invested in 

the money market account. At the subsequent time 	 + ∆	 where ∆	 = 1/360 for one-day rebalancing 

of the portfolio or ∆	 = 1/$360 × 288% for five-minute rebalancing, the hedging error $ℋℰ% of this 

strategy is computed as: 

ΗS)$	 + ∆	% = $¨���� − ¨�% − $Η�)$����� − ��% + 
W�Δ	 + �Η�)��Δ	%. (24) 

Second, a hedging strategy driven by two instruments, a variance swap and its underlying state 

variable which here is the stock price, is considered and referred to as  ΗS�),�����.The variance swap is 

issued at time 	 and has the same maturity date � as the option contract, that is  � = Ψ. A long position 

in the contingent claim ¨ at time 	 is delta-hedged by taking a short position in  Η�) = �¨
�)  shares of the 

stock, a short position in  Η����� = ��� �¨
����� variance swaps and investing the residuals  W� = ¨� −

Η�)�� − Η�����℧�����
 in the money market account. Because the swap is issued at time 	, ℧����� = 0 . 

The hedging error $ℋℰ% of this strategy at time 	 + Δ	 is computed as follows: 

ΗS�),�����$	 + Δ	% = $¨���� − ¨�% 

−�Η�)$����� − ��% + Η������℧�������� − ℧������ + 
W�Δ	 + �Η�)��Δ	�. (25) 
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The strategy ΗS�),����� is compared to a cross-hedge strategy to evaluate its relative 

performance in hedging volatility risk in the presence of jump risk. The underlying stock and another 

option contract named ∅ are used in this two-instrument hedging strategy. The vega neutrality of the 

portfolio is assured first using option ∅. Next, the portfolio is made delta-neutral by buying or selling 

the underlying stock (Bakshi et al. 1997). This cross-hedge strategy or delta-vega hedging is referred to 

as  ΗS$),∅%.   
Third, a hedging strategy driven by multiple instruments which include the bipower variation 

swap and &th-order moment swaps $3 ≤ & ≤ 12% in the replicating portfolio is considered. This 

strategy is referred to as  ΗS�),����,���e1��. The hedging error $ℋℇ% of this strategy is given by:  

ΗS�),����,���e1��$	 + Δ	% = $¨���� − ¨�% 

− �Η�)$����� − ��% + Η������℧�������� − ℧������ + ∑ Η����eç B℧�������eç − ℧����eçC Fv4F �  
−$
W�Δ	 + �Η�)��Δ	%,   (26) 

where W� = ¨� − Η�)�� − Η�����℧����� − ∑ Η����eç℧����eç Fv4F = ¨� − Η�)��  because for all values of  

l,  ℧����� = ℧����eç = 0  as the swap inception date is time 	.  

Finally, to hedge against random jumps, a special case of the multi-instrument strategy is 

considered with & = 3, which contains only the third-order moment swap and is referred to as  ΗS�),����,���e
�. The hedging error $ℋℇ% of this special strategy is computed as follows: 

ΗS�),����,���e
�$	 + Δ	% = $¨���� − ¨�% − �Η�)$����� − ��% + Η������℧�������� − ℧������� 
−6Η����e
 B℧���Í���e
 − ℧����e
C + 
W�Δ	 + �Η�)��Δ	7 (27) 

The results of these various hedging strategies are summarized in Tables 7-8. The key 

contribution of this paper is empirical and is illustrated in Tables 7-8 which clearly shows that 

 
Table 8: Results of Alternative European Options Hedging Strategies 

 

  
Mean Hedging Error 

 òósssss 

Mean Absolute Error 

MAE 

Root Mean Squared Error 

RMSE 

Moneyness 
Hedging 

Strategy 
30 90 180 30 90 180 30 90 180 

Panel A: European Call Options Hedging Errors �/X = 1.00  ±() -0.191 -0.094 -0.038 2.015 2.013 2.017 3.025 3.002 3.016 

 ±(�),����� 0.062 -0.017 -0.016 0.406 0.271 0.211 0.607 0.374 0.318 

 ±(�),����,���
 0.059 -0.016 -0.015 0.398 0.264 0.202 0.581 0.367 0.305 

 ±($),∅% -0.068 -0.019 -0.018 0.447 0.285 0.213 0.629 0.426 0.339 

�/X = 0.975 ±() -0.124 -0.067 -0.027 2.161 2.191 2.231 3.046 3.131 3.211 

 ±(�),����� 0.051 -0.015 -0.013 0.428 0.256 0.208 0.582 0.417 0.298 

 ±(�),����,���
 0.049 -0.012 -0.011 0.396 0.241 0.194 0.537 0.385 0.279 

 ±($),∅% 0.058 0.019 0.019 0.458 0.269 0.214 0.635 0.439 0.328 

�/X = 0.95 ±() -0.125 -0.048 0.002 2.109 2.327 2.436 3.007 3.358 3.463 

 ±(�),����� 0.074 -0.041 -0.032 0.685 0.463 0.428 0.936 0.739 0.642 

 ±(�),����,���
 0.067 -0.035 -0.027 0.648 0.421 0.395 0.902 0.713 0.604 

 ±($),∅% 0.095 0.048 0.039 0.762 0.578 0.469 1.054 0.847 0.709 

Panel B: European Put Options Hedging Errors �/X = 1.10 ±() -0.155 -0.108 -0.068 0.839 1.017 1.217 1.463 1.614 1.873 

 ±(�),����� -0.038 -0.039 -0.008 0.547 0.653 0.748 0.838 0.977 0.984 

 ±(�),����,���
 0.027 -0.032 -0.007 0.538 0.624 0.719 0.822 0.965 0.978 

 ±($),∅% -0.049 -0.048 -0.009 0.652 0.886 0.973 0.948 1.142 1.285 
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Mean Hedging Error 

 òósssss 

Mean Absolute Error 

MAE 

Root Mean Squared Error 

RMSE 

Moneyness 
Hedging 

Strategy 
30 90 180 30 90 180 30 90 180 

�/X = 1.08 ±() -0.192 -0.116 -0.048 1.008 1.184 1.362 1.635 1.709 2.018 

 ±(�),����� -0.046 -0.048 -0.007 0.614 0.819 0.794 0.878 0.991 1.052 

 ±(�),����,���
 0.038 -0.039 -0.006 0.665 0.735 0.788 0.863 0.984 1.035 

 ±($),∅% -0.057 -0.049 -0.008 0.787 0.916 0.953 1.137 1.268 1.406 

�/X = 1.05 ±() -0.221 -0.094 -0.037 1.206 1.354 1.515 1.876 2.027 2.205 

 ±(�),����� -0.059 -0.021 -0.002 0.768 0.774 0.856 1.038 1.046 1.092 

 ±(�),����,���
 0.057 -0.017 -0.001 0.735 0.769 0.812 1.012 1.028 1.034 

 ±($),∅% -0.068 -0.028 0.003 1.003 1.109 1.294 1.337 1.429 1.501 

�/X = 1.025 ±() -0.222 -0.088 -0.027 1.471 1.531 1.659 2.269 2.272 2.416 

 ±(�),����� 0.049 -0.015 -0.007 0.878 0.841 0.757 1.382 1.164 1.119 

 ±(�),����,���
 0.045 -0.012 -0.006 0.872 0.833 0.746 1.358 1.118 1.104 

 ±($),∅% -0.058 -0.017 -0.008 1.187 1.175 1.213 1.514 1.606 1.713 

Notes: The values of the mean hedging error ℋℰsssss, the mean absolute error MAE and the root mean squared error RMSE are 

displayed in this Table for various hedging strategies executed on European options written on the S&P 500 index. HSÎ is a delta hedging strategy on the underlying stock. HS�Î,ùúû�� is a two-instrument strategy, HS�Î,ùúû�,ùúû
� is 

a three-instrument strategy, and HS$Î,∅% is the cross-hedging strategy. The third-order non-central risk-neutral 

moment at each point in time is used to approximate the third-order moment swap rate. The deltas of the hedging 

instruments are drawn from the estimates of the model in Table 3. Maturities considered are 30, 90 and 180 days. 

Hedging errors are computed each day with daily rebalancing from 1/2003 to12/2017. 

 

the hedging strategies involving higher-order moment swaps perform better across all moneyness and 

maturity categories. Even though the moment swap rates in equations (4) and (5) are obtained by 

convergence in probability, there is no evidence of model misspecification and the results of the 

hedging strategies are robust. The mean hedging error moves from negative (delta hedged case) to 

positive or very close to zero because of better hedging and not because the new tools used over hedge. 

An examination of the left tail of the distribution of the hedging errors (ℋℰ) of strategy ±() confirms 

the superiority of strategies ±(�),����,���
� and ±(�),����,���e1��, consistent with the theory that jump 

risk is priced by the market. Hence, strategies ±(�),����,���
� and ±(�),����,���e1�� adequately 

captures the mean jump risk premium. 

 

 

6.  Conclusions 
This paper provides the evidence for the importance of considering stochastic volatility, random jumps, 

and higher-order moment swaps in the pricing and hedging model. The model considered here assumes 

jumps to occur in the price process. A model with correlated jumps between the asset return and its 

volatility is being treated and tested in a separate paper. The model is tested using return data as well as 

European call and put option data on the S&P 500 index. Pricing accuracy is assessed by imposing 

consistency between physical and risk-neutral estimates. Using a two-step iterative approach, the paper 

first filters latent model variables and then uses these variables to estimate model parameters. These 

two steps are iterated until there is no further improvement in the aggregate objective function. An 

integrated approach is used by analyzing option data as well as the underlying return data in the 

calibration process. The results of the empirical tests show that adding jump components to a stochastic 

volatility model in a market enlarged with higher-moment swaps leads to a more realistic modeling of 

conditional higher moments as well as the moneyness and maturity effects, an improvement of the 

modeling of the term structure of the conditional variance, and a superior model pricing performance. 

Short-term option prices are critically influenced by the mean jump risk premium. The model fit to the 

time series data and cross-sectional dimension is outstanding, a confirmation of the model’s ability to 

capture more of the variability of the option data. The root mean squared errors reported both in-



24 International Research Journal of Finance and Economics - Issue 176 (2019) 

 

sample and out-of-sample are much smaller than those reported under the two-factor stochastic 

volatility model. Moreover, the test results confirm that jump risk is priced by the market. 

The performance of alternative hedging strategies is evaluated using European options and 

variance swaps data written on the S&P 500 index. The results show that to hedge against stochastic 

volatility and random jumps, the self-financing portfolio must contain variance and higher-order 

moment swaps. Under this condition, a perfect hedge of derivative securities can be achieved when the 

state variable follows the stochastic volatility with random jumps model in a market enlarged with 

higher-order moment swaps. The key new contribution of this paper is that hedging strategies, driven 

by the stochastic volatility with random jumps model in a market enlarged with higher-order moment 

swaps, perform better across all moneyness and maturity classes. The calibration methodology adopted 

leads to computed pricing and hedging errors that are much lower than those under the two-factor 

stochastic volatility model. This research shows the importance of considering stochastic volatility, 

random jumps, and higher-order moment swaps in the pricing and hedging model. 
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